Suppr超能文献

基于少样本学习的内镜图像识别胃印戒细胞癌

Identification of gastric signet ring cell carcinoma based on endoscopic images using few-shot learning.

作者信息

Yin Minyue, Zhang Rufa, Lin Jiaxi, Zhu Shiqi, Liu Lu, Liu Xiaolin, Lu Jianying, Xu Chunfang, Zhu Jinzhou

机构信息

Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China; Suzhou Clinical Center of Digestive Diseases, Suzhou, Jiangsu, 215006, China.

Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Suzhou, Jiangsu, 215500, China.

出版信息

Dig Liver Dis. 2023 Dec;55(12):1725-1734. doi: 10.1016/j.dld.2023.07.005. Epub 2023 Jul 14.

Abstract

BACKGROUND

Deep learning (DL) models perform poorly when there are limited gastric signet ring cell carcinoma (SRCC) samples. Few-shot learning (FSL) can address the small sample problem.

METHODS

EfficientNetV2-S was first pretrained on ImageNet and then pretrained on esophageal endoscopic images (i.e., base classes: normal vs. early cancer vs. advanced cancer) using transfer learning. Second, images of gastric benign ulcers, adenocarcinoma and SRCC, i.e., novel classes (n = 50 per class), were included. Image features were extracted as vectors using the dual pretrained EfficientNetV2-S. Finally, a k-nearest neighbor classifier was used to identify SRCC. The above proposed 3-way 3-shot FSL framework was conducted in three rounds.

RESULTS

Dual pretrained FSL performed better than single pretrained FSL, endoscopists and traditional EfficientNetV2-S models. Dual pretrained FSL obtained the highest accuracy (79.4%), sensitivity (68.8%), recall (68.8%), precision (69.3%) and F1-score (0.691), and the senior endoscopist achieved the highest specificity of 93.6% when identifying SRCC. The macro-AUC and F1-score for dual pretraining (0.763 and 0.703, respectively) were higher than those for single pretraining (0.656 and 0.537, respectively), along with endoscopists and traditional EfficientNetV2-S models. The 2-way 3-shot FSL also performed better.

CONCLUSION

The proposed FSL framework showed practical performance in the differentiation of SRCC on endoscopic images, suggesting the potential of FSL in the computer-aided diagnosis for rare diseases.

摘要

背景

当胃印戒细胞癌(SRCC)样本有限时,深度学习(DL)模型表现不佳。少样本学习(FSL)可以解决小样本问题。

方法

首先在ImageNet上对EfficientNetV2-S进行预训练,然后使用迁移学习在食管内镜图像(即基础类别:正常、早期癌症、晚期癌症)上进行预训练。其次,纳入胃良性溃疡、腺癌和SRCC的图像,即新类别(每个类别n = 50)。使用双重预训练的EfficientNetV2-S将图像特征提取为向量。最后,使用k近邻分类器识别SRCC。上述提出的三分类三样本FSL框架进行了三轮。

结果

双重预训练的FSL比单一预训练的FSL、内镜医师和传统的EfficientNetV2-S模型表现更好。双重预训练的FSL获得了最高的准确率(79.4%)、灵敏度(68.8%)、召回率(68.8%)、精确率(69.3%)和F1分数(0.691),在识别SRCC时,资深内镜医师实现了最高的特异性93.6%。双重预训练的宏AUC和F1分数(分别为0.763和0.703)高于单一预训练(分别为0.656和0.537),也高于内镜医师和传统的EfficientNetV2-S模型。二分类三样本FSL也表现更好。

结论

所提出的FSL框架在内镜图像上鉴别SRCC方面显示出实际性能,表明FSL在罕见病计算机辅助诊断中的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验