Suppr超能文献

基于腹部平片的深度学习模型对肠梗阻的开发和验证。

Development and validation of deep learning models for bowel obstruction on plain abdominal radiograph.

机构信息

Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.

Department of General Surgery, Jintan Affiliated Hospital of Jiangsu University, Changzhou, China.

出版信息

J Int Med Res. 2024 Sep;52(9):3000605241271844. doi: 10.1177/03000605241271844.

Abstract

OBJECTIVE

Artificial intelligence (AI) could help medical practitioners in analyzing radiological images to determine the presence and site of bowel obstruction. This retrospective diagnostic study proposed a series of deep learning (DL) models for diagnosing bowel obstruction on abdominal radiograph.

METHODS

A total of 2082 upright plain abdominal radiographs were retrospectively collected from four hospitals. The images were labeled as normal, small bowel obstruction and large bowel obstruction by three senior radiologists based on comprehensive examinations and interventions within 48 hours after admission. Gradient-weighted class activation mapping was used to visualize the inferential explanation.

RESULTS

In the validation set, the Xception-backboned model achieved the highest accuracy (0.863), surpassing the VGG16 (0.847) and ResNet models (0.836). In the test set, the Xception model (accuracy: 0.807) outperformed other models and a junior radiologist (0.780) but not a senior radiologist (0.840). In the AI-aided diagnostic framework, the junior and senior radiologists made their judgements while aware of the Xception model predictions. Their accuracy significantly improved to 0.887 and 0.913, respectively.

CONCLUSIONS

We developed and validated DL-based computer vision models for diagnosing bowel obstruction on plain abdominal radiograph. DL-based computer-aided diagnostic systems could reduce medical practitioners' workloads and improve diagnostic accuracy.

摘要

目的

人工智能(AI)可以帮助医学从业者分析放射图像,以确定肠梗阻的存在和部位。本回顾性诊断研究提出了一系列深度学习(DL)模型,用于诊断腹部 X 光片上的肠梗阻。

方法

从四家医院回顾性收集了 2082 张直立腹部平片。根据入院后 48 小时内的综合检查和干预,三位资深放射科医生将图像标记为正常、小肠梗阻和大肠梗阻。使用梯度加权类激活映射来可视化推理解释。

结果

在验证集中,基于 Xception 骨干的模型实现了最高的准确性(0.863),超过了 VGG16(0.847)和 ResNet 模型(0.836)。在测试集中,Xception 模型(准确性:0.807)优于其他模型和初级放射科医生(0.780),但不如高级放射科医生(0.840)。在 AI 辅助诊断框架中,初级和高级放射科医生在了解 Xception 模型预测的情况下做出判断。他们的准确性分别显著提高到 0.887 和 0.913。

结论

我们开发并验证了基于深度学习的计算机视觉模型,用于诊断腹部 X 光片上的肠梗阻。基于深度学习的计算机辅助诊断系统可以减轻医疗从业者的工作量并提高诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae8d/11439178/b62c4a2a7cc6/10.1177_03000605241271844-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验