Suppr超能文献

VDAC1 蛋白通过调控氧化损伤和线粒体功能障碍介导的二氧化硅纳米颗粒对 SH-SY5Y 细胞的细胞毒性

VDAC1 Protein Regulation of Oxidative Damage and Mitochondrial Dysfunction-Mediated Cytotoxicity by Silica Nanoparticles in SH-SY5Y Cells.

机构信息

School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China.

School of Public Health, Capital Medical University, Beijing, People's Republic of China.

出版信息

Mol Neurobiol. 2023 Nov;60(11):6542-6555. doi: 10.1007/s12035-023-03491-9. Epub 2023 Jul 17.

Abstract

Silica nanoparticles (SiNPs) have been widely used in industry, electronics, and pharmaceutical industries. In addition, it is also widely used in medicine, tumor treatment and diagnosis, as well as other biomedical and biotechnology fields. The opportunities for people to contact SiNPs through iatrogenic, occupational, and environmental exposures are gradually increasing. The damage and biological effects of SiNPs on the nervous system have attracted widespread attention in the field of toxicology. Central nerve cells are rich in mitochondria. It is suggested that the effects of SiNPs on mitochondrial damage of nerve cells may involve the maintenance of neuronal membrane potential, the synthesis and operation of neurotransmitters, and the transmission of nerve pulses, and so on. We established an experimental model of SH-SY5Y cells to detect the cell survival rate, apoptosis, changes of reactive oxygen species and mitochondrial membrane potential, and the expression of mitochondrial function-related enzymes and proteins, so as to reveal the possible mechanism of SiNPs on neuronal mitochondrial damage. It was found that SiNPs could cause oxidative damage to cells and mitochondria, destroy some normal functions of mitochondria, and induce apoptosis in SH-SY5Y cells. The voltage-dependent anion channel 1(VDAC1) protein inhibitor DIDS could effectively reduce intracellular oxidative stress, such as the reduction of ROS content, and could also usefully restore some functional proteins of mitochondria to normal levels. The inhibition of VDAC1 protein may play an important role in the oxidative damage and dysfunction of neuronal mitochondria induced by SiNPs.

摘要

硅纳米颗粒(SiNPs)已广泛应用于工业、电子和制药行业。此外,它还广泛应用于医学、肿瘤治疗和诊断以及其他生物医学和生物技术领域。人们通过医源性、职业和环境暴露接触 SiNPs 的机会逐渐增加。SiNPs 对神经系统的损伤和生物学效应在毒理学领域引起了广泛关注。中枢神经细胞富含线粒体。有研究表明,SiNPs 对神经细胞线粒体损伤的影响可能涉及神经元膜电位的维持、神经递质的合成和运作以及神经脉冲的传递等。我们建立了 SH-SY5Y 细胞实验模型,以检测细胞存活率、细胞凋亡、活性氧和线粒体膜电位的变化,以及线粒体功能相关酶和蛋白的表达,从而揭示 SiNPs 对神经元线粒体损伤的可能机制。结果发现,SiNPs 可导致细胞和线粒体氧化损伤,破坏线粒体的一些正常功能,并诱导 SH-SY5Y 细胞凋亡。电压依赖性阴离子通道 1(VDAC1)蛋白抑制剂 DIDS 可有效降低细胞内氧化应激,如 ROS 含量的减少,还可有效将部分线粒体功能蛋白恢复到正常水平。VDAC1 蛋白的抑制可能在 SiNPs 诱导的神经元线粒体氧化损伤和功能障碍中发挥重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验