Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201.
Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201.
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2306152120. doi: 10.1073/pnas.2306152120. Epub 2023 Jul 17.
Ribosomes are the workplace for protein biosynthesis. Protein production required for normal cell function is tightly linked to ribosome abundance. It is well known that ribosomal genes are actively transcribed and ribosomal messenger RNAs (mRNAs) are rapidly translated, and yet ribosomal proteins have relatively long half-lives. These observations raise questions as to how homeostasis of ribosomal proteins is controlled. Here, we show that ribosomal proteins, while posttranslationally stable, are subject to high-level cotranslational protein degradation (CTPD) except for those synthesized as ubiquitin (Ub) fusion precursors. The N-terminal Ub moiety protects fused ribosomal proteins from CTPD. We further demonstrate that cotranslational folding efficiency and expression level are two critical factors determining CTPD of ribosomal proteins. Different from canonical posttranslational degradation, we found that CTPD of all the ribosomal proteins tested in this study does not require prior ubiquitylation. This work provides insights into the regulation of ribosomal protein homeostasis and furthers our understanding of the mechanism and biological significance of CTPD.
核糖体是蛋白质生物合成的工作场所。正常细胞功能所需的蛋白质生产与核糖体丰度紧密相关。众所周知,核糖体基因是被积极转录的,核糖体信使 RNA(mRNA)是被快速翻译的,而核糖体蛋白的半衰期相对较长。这些观察结果提出了一个问题,即如何控制核糖体蛋白的体内平衡。在这里,我们表明,核糖体蛋白在翻译后是稳定的,但除了那些作为泛素(Ub)融合前体合成的核糖体蛋白之外,它们还受到高水平的共翻译蛋白降解(CTPD)的影响。N 端 Ub 部分保护融合的核糖体蛋白免受 CTPD。我们进一步证明,共翻译折叠效率和表达水平是决定核糖体蛋白 CTPD 的两个关键因素。与典型的翻译后降解不同,我们发现本研究中测试的所有核糖体蛋白的 CTPD 都不需要预先泛素化。这项工作为核糖体蛋白动态平衡的调控提供了新的见解,并进一步加深了我们对 CTPD 的机制和生物学意义的理解。