Suppr超能文献

双层 3D DNA 纳米结构:用于 miRNA 传感和细胞内成像的新一代超快速 DNA 纳米机器。

Dual-layer 3D DNA nanostructure: The next generation of ultrafast DNA nanomachine for microRNA sensing and intracellular imaging.

机构信息

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.

出版信息

Biosens Bioelectron. 2023 Oct 1;237:115517. doi: 10.1016/j.bios.2023.115517. Epub 2023 Jul 4.

Abstract

The working efficiency of traditional 3D DNA nanomachines is extremely restricted due to the complex DNA components modified on nanoparticles in the same spatial height. Herein, an ultrafast dual-layer 3D DNA nanomachine (UDDNM) based on catalytic hairpin assembly (CHA) was developed by assembling two different lengths of hairpin DNA on the surface of gold nanoparticles, the long hairpin 1 (H1), to capture the trigger, and the short hairpin 2 (H2), as the signal probe, to recycle the trigger. Compared to the traditional single-layer 3D DNA nanomachine, the dual-layer 3D DNA nanostructure greatly enhances the effective collision between trigger and targeted DNA probe, H1, since the H1 located in outer layer would react with the trigger, inhibiting the invalid collision between the trigger and residual DNA component, H2, and remarkably decreasing the steric hindrance associated with the nucleic acids layer around the nanoparticles. Especially, when the distance of two layers was fixed at 3 nm, the corresponding UDDNM could accomplish the overall reaction only in 3 min with a dramatically high initial rate of up to 5.93 × 10 M s, which was at least 5-fold beyond that of the typical single-layer 3D DNA nanomachines. As a proof of concept, the described UDDNM was successfully applied in ultrasensitive fluorescence detection and sensitive intracellular imaging of miRNA-21. Consequently, our strategy, based on the creation of dual-layer 3D DNA nanostructure, may create a new approach to designing the next generation of DNA nanomachine and has enormous potential for applications in bio-analysis, logic gate operations, and clinical diagnoses.

摘要

传统的 3D DNA 纳米机器的工作效率受到极大限制,这是由于在纳米粒子的相同空间高度上修饰了复杂的 DNA 成分。在此,通过在金纳米粒子表面组装两种不同长度的发夹 DNA,即长发夹 1 (H1) 用于捕获触发物,以及短发夹 2 (H2) 作为信号探针,来回收触发物,开发了一种超快双层 3D DNA 纳米机器 (UDDNM)。与传统的单层 3D DNA 纳米机器相比,双层 3D DNA 结构极大地增强了触发物与靶向 DNA 探针 H1 之间的有效碰撞,因为位于外层的 H1 会与触发物反应,抑制触发物与残留 DNA 成分 H2 之间的无效碰撞,并显著降低与纳米粒子周围核酸层相关的空间位阻。特别是,当两层之间的距离固定在 3nm 时,相应的 UDDNM 仅需 3 分钟即可完成整个反应,初始速率高达 5.93×10 M s ,至少是典型的单层 3D DNA 纳米机器的 5 倍。作为概念验证,所描述的 UDDNM 成功地应用于 miRNA-21 的超灵敏荧光检测和敏感的细胞内成像。因此,我们基于创建双层 3D DNA 纳米结构的策略,可能为设计下一代 DNA 纳米机器开辟新途径,并在生物分析、逻辑门操作和临床诊断等方面具有巨大的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验