Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , People's Republic of China.
J Am Chem Soc. 2018 Aug 1;140(30):9361-9364. doi: 10.1021/jacs.8b04648. Epub 2018 Jul 19.
Herein, by directly using Watson-Crick base pairing, a highly ordered and field-free three-dimensional (3D) DNA nanostructure is self-assembled by azobenzene (azo)-functionalized DNA nippers in a few minutes, which was applied as a 3D DNA nanomachine with an improved movement efficiency compared to traditional Au-based 3D nanomachines due to the organized and high local concentration of nippers on homogeneous DNA nanostructure. Once microRNA (miRNA) interacts with the 3D nanomachine, the nippers "open" to hybridize with the miRNA. Impressively, photoisomerization of the azo group induces dehybridization/hybridization of the nippers and miRNA under irradiation at different wavelengths, which easily solves one main technical challenge of DNA nanotechnology and biosensing: reversible locomotion in one step within 10 min. As a proof of concept, the described 3D machine is successfully applied in the rapid single-step detection of a biomarker, which gives impetus to the design of new generations of mechanical devices beyond the traditional ones with ultimate applications in sensing analysis and diagnostic technologies.
在此,通过直接利用沃森-克里克碱基配对,在几分钟内,吖啶(azo)功能化 DNA 夹的高度有序且无场的三维(3D)DNA 纳米结构自组装,这被应用为 3D DNA 纳米机器,与传统的基于金的 3D 纳米机器相比,由于夹在均匀的 DNA 纳米结构上的组织和高局部浓度,其运动效率得到了提高。一旦 microRNA(miRNA)与 3D 纳米机器相互作用,夹就会“打开”与 miRNA 杂交。令人印象深刻的是,偶氮基团的光异构化在不同波长的照射下诱导夹和 miRNA 的去杂交/杂交,这很容易解决 DNA 纳米技术和生物传感的一个主要技术挑战:在 10 分钟内一步可逆运动。作为概念验证,所描述的 3D 机器成功应用于生物标志物的快速单步检测,这为超越传统机械装置的新一代机械装置的设计提供了动力,最终应用于传感分析和诊断技术。