Suppr超能文献

基于 DTI 的间接断开测量的可靠性和有效性。

Reliability and validity of DTI-based indirect disconnection measures.

机构信息

UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands; Department of Psychology, University of Amsterdam, the Netherlands.

UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands; Department of Experimental Psychology, Helmholtz Institute, Utrecht University, the Netherlands.

出版信息

Neuroimage Clin. 2023;39:103470. doi: 10.1016/j.nicl.2023.103470. Epub 2023 Jul 11.

Abstract

White matter connections enable the interaction within and between brain networks. Brain lesions can cause structural disconnections that disrupt networks and thereby cognitive functions supported by them. In recent years, novel methods have been developed to quantify the extent of structural disconnection after focal lesions, using tractography data from healthy controls. These methods, however, are indirect and their reliability and validity have yet to be fully established. In this study, we present our implementation of this approach, in a tool supplemented by uncertainty metrics for the predictions overall and at voxel-level. These metrics give an indication of the reliability and are used to compare predictions with direct measures from patients' diffusion tensor imaging (DTI) data in a sample of 95 first-ever stroke patients. Results show that, except for small lesions, the tool can predict fiber loss with high reliability and compares well to direct patient DTI estimates. Clinical utility of the method was demonstrated using lesion data from a subset of patients suffering from hemianopia. Both tract-based measures outperformed lesion localization in mapping visual field defects and showed a network consistent with the known anatomy of the visual system. This study offers an important contribution to the validation of structural disconnection mapping. We show that indirect measures of structural disconnection can be a reliable and valid substitute for direct estimations of fiber loss after focal lesions. Moreover, based on these results, we argue that indirect structural disconnection measures may even be preferable to lower-quality single subject diffusion MRI when based on high-quality healthy control datasets.

摘要

白质连接使大脑网络内部和之间的相互作用成为可能。大脑损伤会导致结构上的连接中断,从而破坏网络及其所支持的认知功能。近年来,已经开发出了一些新的方法,利用健康对照者的轨迹追踪数据来量化局灶性病变后的结构连接中断程度。然而,这些方法是间接的,其可靠性和有效性尚未得到充分证实。在这项研究中,我们展示了我们在一种工具中的实现方法,该工具补充了总体预测和体素级预测的不确定性指标。这些指标提供了可靠性的指示,并用于将预测与 95 名首次中风患者的扩散张量成像 (DTI) 数据的直接测量进行比较。结果表明,除了小病灶外,该工具可以高度可靠地预测纤维丢失情况,并且与直接的患者 DTI 估计值相比表现良好。该方法的临床实用性通过对一组患有偏盲症的患者的病灶数据进行了演示。基于病灶的两种轨迹测量方法在映射视野缺损方面均优于病灶定位,并且表现出与视觉系统已知解剖结构一致的网络。这项研究为结构连接映射的验证做出了重要贡献。我们表明,结构连接的间接测量可以作为局灶性病变后纤维丢失的直接估计的可靠且有效的替代方法。此外,基于这些结果,我们认为间接结构连接测量在基于高质量健康对照数据集时,甚至可能优于低质量的单个体扩散 MRI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1232/10368919/844e3b6d624c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验