文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

应用 18F-FDG PET/CT 影像组学和临床病理特征评估乳腺癌患者的雄激素受体表达。

Assessment of androgen receptor expression in breast cancer patients using 18 F-FDG PET/CT radiomics and clinicopathological characteristics.

机构信息

Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.

Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.

出版信息

BMC Med Imaging. 2023 Jul 17;23(1):93. doi: 10.1186/s12880-023-01052-z.


DOI:10.1186/s12880-023-01052-z
PMID:37460990
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10353086/
Abstract

OBJECTIVE: In the present study, we mainly aimed to predict the expression of androgen receptor (AR) in breast cancer (BC) patients by combing radiomic features and clinicopathological factors in a non-invasive machine learning way. MATERIALS AND METHODS: A total of 48 BC patients, who were initially diagnosed by F-FDG PET/CT, were retrospectively enrolled in this study. LIFEx software was used to extract radiomic features based on PET and CT data. The most useful predictive features were selected by the LASSO (least absolute shrinkage and selection operator) regression and t-test. Radiomic signatures and clinicopathologic characteristics were incorporated to develop a prediction model using multivariable logistic regression analysis. The receiver operating characteristic (ROC) curve, Hosmer-Lemeshow (H-L) test, and decision curve analysis (DCA) were conducted to assess the predictive efficiency of the model. RESULTS: In the univariate analysis, the metabolic tumor volume (MTV) was significantly correlated with the expression of AR in BC patients (p < 0.05). However, there only existed feeble correlations between estrogen receptor (ER), progesterone receptor (PR), and AR status (p = 0.127, p = 0.061, respectively). Based on the binary logistic regression method, MTV, SHAPE_Sphericity (CT Sphericity from SHAPE), and GLCM_Contrast (CT Contrast from grey-level co-occurrence matrix) were included in the prediction model for AR expression. Among them, GLCM_Contrast was an independent predictor of AR status (OR = 9.00, p = 0.018). The area under the curve (AUC) of ROC in this model was 0.832. The p-value of the H-L test was beyond 0.05. CONCLUSIONS: A prediction model combining radiomic features and clinicopathological characteristics could be a promising approach to predict the expression of AR and noninvasively screen the BC patients who could benefit from anti-AR regimens.

摘要

目的:本研究旨在通过结合放射组学特征和临床病理因素,采用非侵入性机器学习方法,预测乳腺癌(BC)患者雄激素受体(AR)的表达。

材料与方法:回顾性纳入 48 例经 F-FDG PET/CT 初诊的 BC 患者,应用 LIFEx 软件提取基于 PET 和 CT 数据的放射组学特征。采用 LASSO(最小绝对收缩和选择算子)回归和 t 检验筛选最有预测价值的特征。采用多变量逻辑回归分析将放射组学特征和临床病理特征相结合建立预测模型。采用受试者工作特征(ROC)曲线、Hosmer-Lemeshow(H-L)检验和决策曲线分析(DCA)评估模型的预测效能。

结果:单因素分析显示,代谢肿瘤体积(MTV)与 BC 患者 AR 表达显著相关(p<0.05)。然而,雌激素受体(ER)、孕激素受体(PR)与 AR 状态之间仅存在微弱相关性(p=0.127,p=0.061)。基于二元逻辑回归方法,将 MTV、SHAPE_Sphericity(CT 球形度来自 SHAPE)和 GLCM_Contrast(CT 对比来自灰度共生矩阵)纳入 AR 表达预测模型。其中,GLCM_Contrast 是 AR 状态的独立预测因子(OR=9.00,p=0.018)。该模型的 ROC 曲线下面积(AUC)为 0.832。H-L 检验的 p 值超过 0.05。

结论:联合放射组学特征和临床病理特征的预测模型可能是预测 AR 表达的一种很有前途的方法,并且可以无创筛选可能从抗 AR 治疗方案中获益的 BC 患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7635/10353086/b3cd72b1323b/12880_2023_1052_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7635/10353086/778f607f6c6d/12880_2023_1052_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7635/10353086/6979f22b0d59/12880_2023_1052_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7635/10353086/7dc752b2a6b7/12880_2023_1052_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7635/10353086/53923180eec8/12880_2023_1052_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7635/10353086/c374f2f3e0c0/12880_2023_1052_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7635/10353086/b3cd72b1323b/12880_2023_1052_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7635/10353086/778f607f6c6d/12880_2023_1052_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7635/10353086/6979f22b0d59/12880_2023_1052_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7635/10353086/7dc752b2a6b7/12880_2023_1052_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7635/10353086/53923180eec8/12880_2023_1052_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7635/10353086/c374f2f3e0c0/12880_2023_1052_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7635/10353086/b3cd72b1323b/12880_2023_1052_Fig6_HTML.jpg

相似文献

[1]
Assessment of androgen receptor expression in breast cancer patients using 18 F-FDG PET/CT radiomics and clinicopathological characteristics.

BMC Med Imaging. 2023-7-17

[2]
Molecular subtype classification of breast cancer using established radiomic signature models based on F-FDG PET/CT images.

Front Biosci (Landmark Ed). 2021-8-30

[3]
Radiomics based on F-FDG PET/CT could differentiate breast carcinoma from breast lymphoma using machine-learning approach: A preliminary study.

Cancer Med. 2020-1

[4]
Predictive value of radiomic signature based on 2-[F]FDG PET/CT in HER2 status determination for primary breast cancer with equivocal IHC results.

Eur J Radiol. 2023-10

[5]
Evaluation of PD-L1 Expression Level in Patients With Non-Small Cell Lung Cancer by F-FDG PET/CT Radiomics and Clinicopathological Characteristics.

Front Oncol. 2021-12-16

[6]
Association of F-FDG PET/CT textural features with immunohistochemical characteristics in invasive ductal breast cancer.

Rev Esp Med Nucl Imagen Mol (Engl Ed). 2022

[7]
The Usefulness of Machine Learning-Based Evaluation of Clinical and Pretreatment [F]-FDG-PET/CT Radiomic Features for Predicting Prognosis in Hypopharyngeal Cancer.

Mol Imaging Biol. 2023-4

[8]
The correlation of F-FDG PET/CT metabolic parameters, clinicopathological factors, and prognosis in breast cancer.

Clin Transl Oncol. 2021-3

[9]
Value of pre-therapy F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer.

Eur J Nucl Med Mol Imaging. 2020-5

[10]
F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients.

Eur J Nucl Med Mol Imaging. 2020-5

引用本文的文献

[1]
Correlation of Androgen Receptor Expression With Ki67 Proliferative Index and Other Clinicopathological Characteristics in Invasive Mammary Carcinomas.

Cureus. 2024-10-4

本文引用的文献

[1]
Prognostic Value of Radiomic Features of F-FDG PET/CT in Patients With B-Cell Lymphoma Treated With CD19/CD22 Dual-Targeted Chimeric Antigen Receptor T Cells.

Front Oncol. 2022-2-7

[2]
Evaluation of PD-L1 Expression Level in Patients With Non-Small Cell Lung Cancer by F-FDG PET/CT Radiomics and Clinicopathological Characteristics.

Front Oncol. 2021-12-16

[3]
Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.

Front Oncol. 2021-8-18

[4]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[5]
Hybrid F-FDG-PET/MRI Measurement of Standardized Uptake Value Coupled with Yin Yang 1 Signature in Metastatic Breast Cancer. A Preliminary Study.

Cancers (Basel). 2019-9-26

[6]
Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis.

Eur J Nucl Med Mol Imaging. 2019-6-25

[7]
PET/CT for Patients With Breast Cancer: Where Is the Clinical Impact?

AJR Am J Roentgenol. 2019-5-7

[8]
The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges.

Theranostics. 2019-2-12

[9]
Reporting and Interpreting Decision Curve Analysis: A Guide for Investigators.

Eur Urol. 2018-9-19

[10]
LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity.

Cancer Res. 2018-6-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索