Suppr超能文献

基于机器学习评估临床及治疗前[F]-FDG-PET/CT影像组学特征对下咽癌预后预测的价值

The Usefulness of Machine Learning-Based Evaluation of Clinical and Pretreatment [F]-FDG-PET/CT Radiomic Features for Predicting Prognosis in Hypopharyngeal Cancer.

作者信息

Nakajo Masatoyo, Kawaji Kodai, Nagano Hiromi, Jinguji Megumi, Mukai Akie, Kawabata Hiroshi, Tani Atsushi, Hirahara Daisuke, Yamashita Masaru, Yoshiura Takashi

机构信息

Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.

Department of Otolaryngology Head and Neck Surgery, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.

出版信息

Mol Imaging Biol. 2023 Apr;25(2):303-313. doi: 10.1007/s11307-022-01757-7. Epub 2022 Jul 21.

Abstract

PURPOSE

To examine whether the machine learning (ML) analyses using clinical and pretreatment 2-deoxy-2-[F]fluoro-D-glucose positron emission tomography ([F]-FDG-PET)-based radiomic features were useful for predicting prognosis in patients with hypopharyngeal cancer.

PROCEDURES

This retrospective study included 100 patients with hypopharyngeal cancer who underwent [F]-FDG-PET/X-ray computed tomography (CT) before treatment, and these patients were allocated to the training (n=80) and validation (n=20) cohorts. Eight clinical (age, sex, histology, T stage, N stage, M stage, UICC stage, and treatment) and 40 [F]-FDG-PET-based radiomic features were used to predict disease progression. A feature reduction procedure based on the decrease of the Gini impurity was applied. Six ML algorithms (random forest, neural network, k-nearest neighbors, naïve Bayes, logistic regression, and support vector machine) were compared using the area under the receiver operating characteristic curve (AUC). Progression-free survival (PFS) was assessed using Cox regression analysis.

RESULTS

The five most important features for predicting disease progression were UICC stage, N stage, gray level co-occurrence matrix entropy (GLCM_Entropy), gray level run length matrix run length non-uniformity (GLRLM_RLNU), and T stage. Patients who experienced disease progression displayed significantly higher UICC stage, N stage, GLCM_Entropy, GLRLM_RLNU, and T stage than those without progression (each, p<0.001). In both cohorts, the logistic regression model constructed by these 5 features was the best performing classifier (training: AUC=0.860, accuracy=0.800; validation: AUC=0.803, accuracy=0.700). In the logistic regression model, 5-year PFS was significantly higher in patients with predicted non-progression than those with predicted progression (75.8% vs. 8.3%, p<0.001), and this model was only the independent factor for PFS in multivariate analysis (hazard ratio = 3.22; 95% confidence interval = 1.03-10.11; p=0.045).

CONCLUSIONS

The logistic regression model constructed by UICC, T and N stages and pretreatment [F]-FDG-PET-based radiomic features, GLCM_Entropy, and GLRLM_RLNU may be the most important predictor of prognosis in patients with hypopharyngeal cancer.

摘要

目的

探讨利用基于临床和治疗前2-脱氧-2-[F]氟代-D-葡萄糖正电子发射断层扫描([F]-FDG-PET)的影像组学特征进行机器学习(ML)分析,是否有助于预测下咽癌患者的预后。

程序

这项回顾性研究纳入了100例治疗前接受过[F]-FDG-PET/X线计算机断层扫描(CT)的下咽癌患者,这些患者被分配到训练组(n = 80)和验证组(n = 20)。使用8项临床特征(年龄、性别、组织学、T分期、N分期、M分期、国际抗癌联盟(UICC)分期和治疗方式)和40项基于[F]-FDG-PET的影像组学特征来预测疾病进展。应用了一种基于基尼不纯度降低的特征约简程序。使用受试者工作特征曲线下面积(AUC)比较了6种ML算法(随机森林、神经网络、k近邻、朴素贝叶斯、逻辑回归和支持向量机)。采用Cox回归分析评估无进展生存期(PFS)。

结果

预测疾病进展的5个最重要特征为UICC分期、N分期、灰度共生矩阵熵(GLCM_Entropy)、灰度游程长度矩阵游程长度不均匀性(GLRLM_RLNU)和T分期。经历疾病进展的患者的UICC分期、N分期、GLCM_Entropy、GLRLM_RLNU和T分期显著高于未进展患者(均p<0.001)。在两个队列中,由这5个特征构建的逻辑回归模型是表现最佳的分类器(训练组:AUC = 0.860,准确率 = 0.800;验证组:AUC = 0.803,准确率 = 0.700)。在逻辑回归模型中,预测无进展的患者5年PFS显著高于预测有进展的患者(75.8%对8.3%,p<0.001),并且该模型是多因素分析中PFS的唯一独立因素(风险比 = 3.22;95%置信区间 = 1.03 - 10.11;p = 0.045)。

结论

由UICC、T和N分期以及治疗前基于[F]-FDG-PET的影像组学特征GLCM_Entropy和GLRLM_RLNU构建的逻辑回归模型可能是下咽癌患者预后的最重要预测指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验