Suppr超能文献

乳腺癌患者新辅助化疗病理完全缓解(pCR)的F-FDG PET/CT影像组学预测指标

F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients.

作者信息

Li Panli, Wang Xiuying, Xu Chongrui, Liu Cheng, Zheng Chaojie, Fulham Michael J, Feng Dagan, Wang Lisheng, Song Shaoli, Huang Gang

机构信息

Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.

Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Eur J Nucl Med Mol Imaging. 2020 May;47(5):1116-1126. doi: 10.1007/s00259-020-04684-3. Epub 2020 Jan 25.

Abstract

PURPOSE

Pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) is commonly accepted as the gold standard to assess outcome after NAC in breast cancer patients. F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has unique value in tumor staging, predicting prognosis, and evaluating treatment response. Our aim was to determine if we could identify radiomic predictors from PET/CT in breast cancer patient therapeutic efficacy prior to NAC.

METHODS

This retrospective study included 100 breast cancer patients who received NAC; there were 2210 PET/CT radiomic features extracted. Unsupervised and supervised machine learning models were used to identify the prognostic radiomic predictors through the following: (1) selection of the significant (p < 0.05) imaging features from consensus clustering and the Wilcoxon signed-rank test; (2) selection of the most discriminative features via univariate random forest (Uni-RF) and the Pearson correlation matrix (PCM); and (3) determination of the most predictive features from a traversal feature selection (TFS) based on a multivariate random forest (RF). The prediction model was constructed with RF and then validated with 10-fold cross-validation for 30 times and then independently validated. The performance of the radiomic predictors was measured in terms of area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

RESULTS

The PET/CT radiomic predictors achieved a prediction accuracy of 0.857 (AUC = 0.844) on the training split set and 0.767 (AUC = 0.722) on the independent validation set. When age was incorporated, the accuracy for the split set increased to 0.857 (AUC = 0.958) and 0.8 (AUC = 0.73) for the independent validation set and both outperformed the clinical prediction model. We also found a close association between the radiomic features, receptor expression, and tumor T stage.

CONCLUSION

Radiomic predictors from pre-treatment PET/CT scans when combined with patient age were able to predict pCR after NAC. We suggest that these data will be valuable for patient management.

摘要

目的

病理完全缓解(pCR)被普遍认为是评估乳腺癌患者新辅助化疗(NAC)后预后的金标准。氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(PET/CT)在肿瘤分期、预测预后和评估治疗反应方面具有独特价值。我们的目的是确定能否在NAC之前从PET/CT中识别出乳腺癌患者治疗疗效的影像组学预测指标。

方法

这项回顾性研究纳入了100例接受NAC的乳腺癌患者;共提取了2210个PET/CT影像组学特征。采用无监督和有监督的机器学习模型,通过以下方式识别预后影像组学预测指标:(1)从一致性聚类和Wilcoxon符号秩检验中选择显著(p < 0.05)的影像特征;(2)通过单变量随机森林(Uni-RF)和Pearson相关矩阵(PCM)选择最具判别力的特征;(3)基于多变量随机森林(RF)的遍历特征选择(TFS)确定最具预测性的特征。用RF构建预测模型,然后进行30次10折交叉验证并独立验证。影像组学预测指标的性能通过曲线下面积(AUC)、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)来衡量。

结果

PET/CT影像组学预测指标在训练分割集上的预测准确率为0.857(AUC = 0.844),在独立验证集上为0.767(AUC = 0.722)。纳入年龄后,分割集的准确率提高到0.857(AUC = 0.958),独立验证集的准确率为0.8(AUC = 0.73),两者均优于临床预测模型。我们还发现影像组学特征、受体表达和肿瘤T分期之间存在密切关联。

结论

治疗前PET/CT扫描的影像组学预测指标与患者年龄相结合,能够预测NAC后的pCR。我们认为这些数据对患者管理具有重要价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验