Somarathne Radha P, Amarasekara Dhanush L, Kariyawasam Chathuri S, Robertson Harley A, Mayatt Railey, Fitzkee Nicholas C
Department of Chemistry, Mississippi State University, Mississippi State, MS 39762 USA.
bioRxiv. 2023 Jul 7:2023.07.06.548033. doi: 10.1101/2023.07.06.548033.
Understanding the conformation of proteins in the nanoparticle corona has important implications in how organisms respond to nanoparticle-based drugs. These proteins coat the nanoparticle surface, and their properties will influence the nanoparticle's interaction with cell targets and the immune system. While some coronas are thought to be disordered, two key unanswered questions are the degree of disorder and solvent accessibility. Here, using a comprehensive thermodynamic approach, along with supporting spectroscopic experiments, we develop a model for protein corona disorder in polystyrene nanoparticles of varying size. For two different proteins, we find that binding affinity decreases as nanoparticle size increases. The stoichiometry of binding, along with changes in the hydrodynamic size, support a highly solvated, disordered protein corona anchored at a small number of enthalpically-driven attachment sites. The scaling of the stoichiometry vs. nanoparticle size is consistent disordered polymer dimensions. Moreover, we find that proteins are destabilized less severely in the presence of larger nanoparticles, and this is supported by measurements of hydrophobic exposure, which becomes less pronounced at lower curvatures. Our observations hold for flat polystyrene surfaces, which, when controlled for total surface area, have the lowest hydrophobic exposure of all systems. Our model provides an explanation for previous observations of increased amyloid fibrillation rates in the presence of larger nanoparticles, and it may rationalize how cell receptors can recognize protein disorder in therapeutic nanoparticles.
了解纳米颗粒冠层中蛋白质的构象对于生物体如何响应基于纳米颗粒的药物具有重要意义。这些蛋白质覆盖在纳米颗粒表面,其性质会影响纳米颗粒与细胞靶点及免疫系统的相互作用。虽然一些冠层被认为是无序的,但两个关键的未解决问题是无序程度和溶剂可及性。在此,我们使用一种全面的热力学方法,并结合辅助光谱实验,为不同尺寸的聚苯乙烯纳米颗粒中的蛋白质冠层无序现象建立了一个模型。对于两种不同的蛋白质,我们发现结合亲和力随着纳米颗粒尺寸的增加而降低。结合化学计量以及流体动力学尺寸的变化,支持了一种高度溶剂化、无序的蛋白质冠层,它锚定在少数由焓驱动的附着位点上。化学计量与纳米颗粒尺寸的比例关系与无序聚合物尺寸一致。此外,我们发现蛋白质在较大纳米颗粒存在下的失稳程度较轻,这一点通过疏水性暴露的测量得到了支持,在较低曲率下疏水性暴露变得不那么明显。我们的观察结果适用于平坦的聚苯乙烯表面,在控制总表面积的情况下,这些表面在所有系统中具有最低的疏水性暴露。我们的模型为先前在较大纳米颗粒存在下淀粉样纤维形成速率增加的观察结果提供了解释,并且它可能解释细胞受体如何识别治疗性纳米颗粒中的蛋白质无序现象。