Adams Mark J, Thorp Jackson G, Jermy Bradley S, Kwong Alex S F, Kõiv Kadri, Grotzinger Andrew D, Nivard Michel G, Marshall Sally, Milaneschi Yuri, Baune Bernhard T, Müller-Myhsok Bertram, Penninx Brenda Wjh, Boomsma Dorret I, Levinson Douglas F, Breen Gerome, Pistis Giorgio, Grabe Hans J, Tiemeier Henning, Berger Klaus, Rietschel Marcella, Magnusson Patrik K, Uher Rudolf, Hamilton Steven P, Lucae Susanne, Lehto Kelli, Li Qingqin S, Byrne Enda M, Hickie Ian B, Martin Nicholas G, Medland Sarah E, Wray Naomi R, Tucker-Drob Elliot M, Lewis Cathryn M, McIntosh Andrew M, Derks Eske M
Division of Psychiatry, University of Edinburgh, Edinburgh, UK.
Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, AU.
medRxiv. 2023 Jul 7:2023.07.05.23292214. doi: 10.1101/2023.07.05.23292214.
Diagnostic criteria for major depressive disorder allow for heterogeneous symptom profiles but genetic analysis of major depressive symptoms has the potential to identify clinical and aetiological subtypes. There are several challenges to integrating symptom data from genetically-informative cohorts, such as sample size differences between clinical and community cohorts and various patterns of missing data. We conducted genome-wide association studies of major depressive symptoms in three clinical cohorts that were enriched for affected participants (Psychiatric Genomics Consortium, Australian Genetics of Depression Study, Generation Scotland) and three community cohorts (Avon Longitudinal Study of Parents and Children, Estonian Biobank, and UK Biobank). We fit a series of confirmatory factor models with factors that accounted for how symptom data was sampled and then compared alternative models with different symptom factors. The best fitting model had a distinct factor for symptoms and an additional measurement factor that accounted for missing data patterns in the community cohorts (use of Depression and Anhedonia as gating symptoms). The results show the importance of assessing the directionality of symptoms (such as hypersomnia versus insomnia) and of accounting for study and measurement design when meta-analysing genetic association data.
重度抑郁症的诊断标准允许存在异质性症状表现,但对重度抑郁症状进行基因分析有潜力识别出临床和病因亚型。整合来自具有遗传信息队列的症状数据存在若干挑战,例如临床队列和社区队列之间的样本量差异以及各种缺失数据模式。我们在三个富含患病参与者的临床队列(精神疾病基因组学联盟、澳大利亚抑郁症遗传学研究、苏格兰一代研究)和三个社区队列(埃文亲子纵向研究、爱沙尼亚生物银行和英国生物银行)中开展了重度抑郁症状的全基因组关联研究。我们拟合了一系列验证性因子模型,这些因子考虑了症状数据的采样方式,然后比较了具有不同症状因子的替代模型。最佳拟合模型对症状有一个独特的因子,还有一个额外的测量因子,该因子解释了社区队列中的缺失数据模式(使用抑郁和快感缺失作为门控症状)。结果表明,在对基因关联数据进行荟萃分析时,评估症状的方向性(如嗜睡与失眠)以及考虑研究和测量设计非常重要。