McCalpin Samuel D, Widanage Malitha C Dickwella, Fu Riqiang, Ramamoorthy Ayyalusamy
Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Arbor, MI 48109, USA.
National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA.
bioRxiv. 2023 Jul 8:2023.07.06.547982. doi: 10.1101/2023.07.06.547982.
Intermediates along the fibrillation pathway are generally considered to be the toxic species responsible for the pathologies of amyloid diseases. However, structural studies of these species have been hampered by heterogeneity and poor stability in standard aqueous conditions. Here, we report a novel methodology for producing stable, on-pathway oligomers of the human Type-2 Diabetes-associated islet amyloid polypeptide (hIAPP, or amylin) using the mechanical forces associated with magic angle spinning (MAS). The species were a heterogeneous mixture of globular and short rod-like species with significant beta-sheet content and the capability of seeding hIAPP fibrillation. We used MAS NMR to demonstrate that the nature of the species was sensitive to sample conditions including peptide concentration, ionic strength, and buffer. The methodology should be suitable for studies of other aggregating systems.
淀粉样变疾病的病理通常被认为是由原纤维形成途径中的中间体这种毒性物质导致的。然而,这些中间体的结构研究受到其异质性以及在标准水性条件下稳定性较差的阻碍。在此,我们报告了一种新方法,利用与魔角旋转(MAS)相关的机械力来生成稳定的、处于原纤维形成途径中的人2型糖尿病相关胰岛淀粉样多肽(hIAPP,即胰岛淀粉样多肽)低聚物。这些物质是球状和短棒状物质的异质混合物,具有显著的β-折叠含量以及引发hIAPP原纤维形成的能力。我们使用MAS核磁共振(NMR)来证明这些物质的性质对包括肽浓度、离子强度和缓冲液在内的样品条件敏感。该方法应适用于其他聚集系统的研究。