Lyu Jixing, Zhang Tianqi, Marty Michael T, Clemmer David, Russell David H, Laganowsky Arthur
Department of Chemistry, Texas A&M University, College Station, TX 77843.
Department of Chemistry and Biochemistry and Bio5 Institute, The University of Arizona, Tucson, AZ 85721.
bioRxiv. 2023 Nov 6:2023.07.03.547565. doi: 10.1101/2023.07.03.547565.
Structural and functional studies of the ATP-binding cassette transporter MsbA have revealed two distinct lipopolysaccharide (LPS) binding sites: one located in the central cavity and the other at a membrane-facing, exterior site. Although these binding sites are known to be important for MsbA function, the thermodynamic basis for these specific MsbA-LPS interactions is not well understood. Here, we use native mass spectrometry to determine the thermodynamics of MsbA interacting with the LPS-precursor 3-deoxy-D--oct-2-ulosonic acid (Kdo)-lipid A (KDL). The binding of KDL is solely driven by entropy, despite the transporter adopting an inward-facing conformation or trapped in an outward-facing conformation with adenosine 5'-diphosphate and vanadate. An extension of the mutant cycle approach is employed to probe basic residues that interact with KDL. We find the molecular recognition of KDL is driven by a positive coupling entropy (as large as -100 kJ/mol at 298K) that outweighs unfavorable coupling enthalpy. These findings indicate that alterations in solvent reorganization and conformational entropy can contribute significantly to the free energy of protein-lipid association. The results presented herein showcase the advantage of native MS to obtain thermodynamic insight into protein-lipid interactions that would otherwise be intractable using traditional approaches, and this enabling technology will be instrumental in the life sciences and drug discovery.
ATP结合盒转运蛋白MsbA的结构和功能研究揭示了两个不同的脂多糖(LPS)结合位点:一个位于中央腔,另一个位于面向膜的外部位点。尽管已知这些结合位点对MsbA的功能很重要,但这些特定的MsbA-LPS相互作用的热力学基础尚未得到很好的理解。在这里,我们使用原生质谱来确定MsbA与LPS前体3-脱氧-D-甘露糖醛酸(Kdo)-脂质A(KDL)相互作用的热力学。尽管转运蛋白采用向内的构象或被腺苷5'-二磷酸和钒酸盐捕获在向外的构象中,但KDL的结合完全由熵驱动。采用突变循环方法的扩展来探测与KDL相互作用的碱性残基。我们发现KDL的分子识别由正耦合熵驱动(在298K时高达-100 kJ/mol),该熵超过了不利的耦合焓。这些发现表明溶剂重组和构象熵的改变可对蛋白质-脂质缔合的自由能有显著贡献。本文给出的结果展示了原生质谱在获得对蛋白质-脂质相互作用的热力学见解方面的优势,否则使用传统方法将难以处理,并且这种使能技术将在生命科学和药物发现中发挥重要作用。