Department of Chemistry, Texas A&M University, College Station, United States.
Department of Chemistry and Biochemistry and Bio5 Institute, The University of Arizona, Tucson, United States.
Elife. 2024 Jan 22;12:RP91094. doi: 10.7554/eLife.91094.
Structural and functional studies of the ATP-binding cassette transporter MsbA have revealed two distinct lipopolysaccharide (LPS) binding sites: one located in the central cavity and the other at a membrane-facing, exterior site. Although these binding sites are known to be important for MsbA function, the thermodynamic basis for these specific MsbA-LPS interactions is not well understood. Here, we use native mass spectrometry to determine the thermodynamics of MsbA interacting with the LPS-precursor 3-deoxy-D--oct-2-ulosonic acid (Kdo)-lipid A (KDL). The binding of KDL is solely driven by entropy, despite the transporter adopting an inward-facing conformation or trapped in an outward-facing conformation with adenosine 5'-diphosphate and vanadate. An extension of the mutant cycle approach is employed to probe basic residues that interact with KDL. We find the molecular recognition of KDL is driven by a positive coupling entropy (as large as -100 kJ/mol at 298 K) that outweighs unfavorable coupling enthalpy. These findings indicate that alterations in solvent reorganization and conformational entropy can contribute significantly to the free energy of protein-lipid association. The results presented herein showcase the advantage of native MS to obtain thermodynamic insight into protein-lipid interactions that would otherwise be intractable using traditional approaches, and this enabling technology will be instrumental in the life sciences and drug discovery.
结构与功能研究表明,ATP 结合盒转运蛋白 MsbA 有两个不同的脂多糖(LPS)结合位点:一个位于中央腔,另一个位于面向膜的外部位点。尽管这些结合位点对于 MsbA 功能很重要,但对于这些特定的 MsbA-LPS 相互作用的热力学基础还不是很清楚。在这里,我们使用天然质谱法来确定 MsbA 与 LPS 前体 3-脱氧-D- -辛-2-酮酸(Kdo)-脂酰基 A(KDL)相互作用的热力学。尽管转运蛋白采用内向构象或被腺苷 5'-二磷酸和钒酸盐困住在外向构象中,KDL 的结合仅由熵驱动。扩展突变循环方法用于探测与 KDL 相互作用的碱性残基。我们发现 KDL 的分子识别由正耦合熵驱动(在 298 K 时高达-100 kJ/mol),超过不利的耦合焓。这些发现表明,溶剂重组和构象熵的改变可以显著影响蛋白质-脂质相互作用的自由能。本文的研究结果展示了天然 MS 在获得蛋白质-脂质相互作用热力学见解方面的优势,这是传统方法无法解决的,这种使能技术将在生命科学和药物发现中发挥重要作用。