Suppr超能文献

新冠后状况表型的识别,以及在健康相关生活质量和医疗保健使用方面的差异:聚类分析。

Identification of post-COVID-19 condition phenotypes, and differences in health-related quality of life and healthcare use: a cluster analysis.

机构信息

Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands.

C-support, 's Hertogenbosch, The Netherlands.

出版信息

Epidemiol Infect. 2023 Jul 18;151:e123. doi: 10.1017/S0950268823001139.

Abstract

The aim of this cross-sectional study was to identify post-COVID-19 condition (PCC) phenotypes and to investigate the health-related quality of life (HRQoL) and healthcare use per phenotype. We administered a questionnaire to a cohort of PCC patients that included items on socio-demographics, medical characteristics, health symptoms, healthcare use, and the EQ-5D-5L. A principal component analysis (PCA) of PCC symptoms was performed to identify symptom patterns. K-means clustering was used to identify phenotypes. In total, 8630 participants completed the survey. The median number of symptoms was 18, with the top 3 being fatigue, concentration problems, and decreased physical condition. Eight symptom patterns and three phenotypes were identified. Phenotype 1 comprised participants with a lower-than-average number of symptoms, phenotype 2 with an average number of symptoms, and phenotype 3 with a higher-than-average number of symptoms. Compared to participants in phenotypes 1 and 2, those in phenotype 3 consulted significantly more healthcare providers (median 4, 6, and 7, respectively,  < 0.001) and had a significantly worse HRQoL ( < 0.001). In conclusion, number of symptoms rather than type of symptom was the driver in the identification of PCC phenotypes. Experiencing a higher number of symptoms is associated with a lower HRQoL and more healthcare use.

摘要

这项横断面研究的目的是确定新冠后状况(PCC)的表型,并调查每种表型的健康相关生活质量(HRQoL)和医疗保健使用情况。我们向一组 PCC 患者发放了一份问卷,其中包括社会人口统计学、医学特征、健康症状、医疗保健使用情况和 EQ-5D-5L 等项目。对 PCC 症状进行了主成分分析(PCA),以确定症状模式。采用 K-均值聚类法确定表型。共有 8630 名参与者完成了调查。症状中位数为 18 种,前 3 种症状为疲劳、注意力问题和体力下降。确定了 8 种症状模式和 3 种表型。表型 1 包括症状数量低于平均水平的参与者,表型 2 包括症状数量平均水平的参与者,表型 3 包括症状数量高于平均水平的参与者。与表型 1 和 2 的参与者相比,表型 3 的参与者咨询的医疗服务提供者明显更多(中位数分别为 4、6 和 7,均<0.001),HRQoL 明显更差(<0.001)。总之,症状数量而不是症状类型是确定 PCC 表型的驱动因素。经历更多的症状与较低的 HRQoL 和更多的医疗保健使用相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/649f/10540165/9e0bbb5612fa/S0950268823001139_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验