Suppr超能文献

模拟肌腱微环境以增强功能性微悬臂平台中骨骼肌的黏附性和耐久性。

Mimicking the Tendon Microenvironment to Enhance Skeletal Muscle Adhesion and Longevity in a Functional Microcantilever Platform.

机构信息

Nanoscience Technology Center, University of Central Florida, 12424 Research Pkwy, Orlando, Florida 32826, United States.

出版信息

ACS Biomater Sci Eng. 2023 Aug 14;9(8):4698-4708. doi: 10.1021/acsbiomaterials.3c00235. Epub 2023 Jul 18.

Abstract

Microcantilever platforms are functional models for studying skeletal muscle force dynamics in vitro. However, the contractile force generated by the myotubes can cause them to detach from the cantilevers, especially during long-term experiments, thus impeding the chronic investigations of skeletal muscles for drug efficacy and toxicity. To improve the integration of myotubes with microcantilevers, we drew inspiration from the elastomeric proteins, elastin and resilin, that are present in the animal and insect worlds, respectively. The spring action of these proteins plays a critical role in force dampening in vivo. In animals, elastin is present in the collagenous matrix of the tendon which is the attachment point of muscles to bones. The tendon microenvironment consists of elastin, collagen, and an aqueous jelly-like mass of proteoglycans. In an attempt to mimic this tendon microenvironment, elastin, collagen, heparan sulfate proteoglycan, and hyaluronic acid were deposited on a positively charged silane substrate. This enabled the long-term survival of mechanically active myotubes on glass and silicon microcantilevers for over 28 days. The skeletal muscle cultures were derived from both primary and induced pluripotent stem cell (iPSC)-derived human skeletal muscles. Both types of myoblasts formed myotubes which survived for five weeks. Primary skeletal muscles and iPSC-derived skeletal muscles also showed a similar trend in fatigue index values. Upon integration with the microcantilever system, the primary muscle and iPSC-derived myotubes were tested successively over a one month period, thus paving the way for long-term chronic experiments on these systems for both drug efficacy and toxicity studies.

摘要

微悬臂平台是研究体外骨骼肌力动力学的功能模型。然而,肌管产生的收缩力会导致它们从微悬臂上脱落,尤其是在长期实验中,从而阻碍了对骨骼肌药物疗效和毒性的慢性研究。为了提高肌管与微悬臂的整合,我们从弹性蛋白和 resilin 这两种分别存在于动物和昆虫世界中的弹性蛋白中获得灵感。这些蛋白质的弹簧作用在体内的力衰减中起着关键作用。在动物中,弹性蛋白存在于肌腱的胶原基质中,肌腱是肌肉附着在骨骼上的部位。肌腱微环境由弹性蛋白、胶原和粘多糖蛋白聚糖的水凝胶状物质组成。为了尝试模拟这种肌腱微环境,弹性蛋白、胶原、硫酸乙酰肝素蛋白聚糖和透明质酸被沉积在带正电荷的硅烷基底上。这使得机械活性肌管能够在玻璃和硅微悬臂上长期存活超过 28 天。骨骼肌培养物源自原代和诱导多能干细胞(iPSC)衍生的人类骨骼肌。两种类型的成肌细胞都形成了肌管,存活了五周。原代骨骼肌和 iPSC 衍生的骨骼肌的疲劳指数值也呈现出类似的趋势。在与微悬臂系统集成后,原代肌肉和 iPSC 衍生的肌管在一个月的时间内依次进行了测试,从而为这些系统的长期慢性药物疗效和毒性研究铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验