Liu Wenhao, Liu Haowen, Wang Zhi, Li Shushen, Wang Linwang, Luo Junwei
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
J Phys Chem Lett. 2023 Jul 27;14(29):6647-6657. doi: 10.1021/acs.jpclett.3c00576. Epub 2023 Jul 18.
This Perspective focuses on recent advances in understanding ultrafast processes involved in photoinduced structural phase transitions and proposes a strategy for precise manipulation of such transitions. It has been demonstrated that photoexcited carriers occupying empty antibonding or bonding states generate atomic driving forces that lead to either stretching or shortening of associated bonds, which in turn induce collective and coherent motions of atoms and yield structural transitions. For instance, phase transitions in IrTe and VO, and nonthermal melting in Si, can be explained by the occupation of specific local bonding or antibonding states during laser excitation. These cases reveal the electronic-orbital-selective nature of laser-induced structural transitions. Based on this understanding, we propose an inverse design protocol for achieving or preventing a target structural transition by controlling the related electron occupations with orbital-selective photoexcitation. Overall, this Perspective provides a comprehensive overview of recent advancements in dynamical structural control in solid materials.
这篇展望聚焦于理解光致结构相变中超快过程的最新进展,并提出了一种精确操纵此类相变的策略。已经证明,占据空的反键或成键态的光激发载流子会产生原子驱动力,导致相关键的伸长或缩短,进而引发原子的集体相干运动并产生结构转变。例如,IrTe和VO中的相变以及Si中的非热熔化,可以通过激光激发过程中特定局部成键或反键态的占据来解释。这些案例揭示了激光诱导结构转变的电子轨道选择性本质。基于这一认识,我们提出了一种逆向设计方案,通过轨道选择性光激发控制相关电子占据情况,以实现或阻止目标结构转变。总体而言,这篇展望全面概述了固体材料动态结构控制方面的最新进展。