Suppr超能文献

基于多特征融合模型的水产养殖环境下的鱼类图像分割方法。

A fish image segmentation methodology in aquaculture environment based on multi-feature fusion model.

机构信息

School of Computer Science and Technology, Shandong Technology and Business University, China.

School of Computer Science and Technology, Shandong Technology and Business University, China.

出版信息

Mar Environ Res. 2023 Sep;190:106085. doi: 10.1016/j.marenvres.2023.106085. Epub 2023 Jul 7.

Abstract

Underwater fish image processing is one of the key technologies to realize intelligent aquaculture. However, due to the complexity of marine environments, underwater fish images usually have the characteristics of color cast, unbalanced contrast, and blur. Current underwater fish image segmentation methods lack adaptive models and have low segmentation accuracy. Hence, this paper constructs a convolutional neural network-based image segmentation model. This paper first proposes a fish image preprocessing method based on pixel threshold segmentation. To enhance the important features in a fish image, this method uses the minimum Euclidean distance between the original image peaks to redefine the threshold and fuses the thresholded image with the original image. Second, to strengthen the extraction of high-level semantic features of images, the multiscale attentional feature extraction module (MAFEM), which fuses the adaptive channel attention mechanism with the hybrid dilated convolutional pyramid pooling module, is proposed. In this paper, a data set in voc format is produced based on underwater fish images, and this data set is used to verify the model in this paper. The mean intersection over union (MIoU) reaches 92.6%. Compared with other traditional segmentation models, the MIoU, mean pixel accuracy (MPA), and balanced F score (F1-score) of the segmentation results of the model in this paper are increased by averages of 1.84%, 0.785%, and 1.18%, respectively. The experimental results show that this model has a better segmentation effect than other models and provides a theoretical basis for intelligent monitoring of underwater fish body length measurement, weight estimation, and discrimination of growth and health statuses.

摘要

水下鱼类图像处理是实现智能水产养殖的关键技术之一。然而,由于海洋环境的复杂性,水下鱼类图像通常具有色彩失真、对比度不平衡和模糊等特点。现有的水下鱼类图像分割方法缺乏自适应模型,分割精度较低。因此,本文构建了一种基于卷积神经网络的图像分割模型。本文首先提出了一种基于像素阈值分割的鱼类图像预处理方法。为了增强鱼类图像中的重要特征,该方法使用原始图像峰之间的最小欧几里得距离重新定义阈值,并将阈值图像与原始图像融合。其次,为了增强图像的高层语义特征的提取,提出了多尺度注意特征提取模块(MAFEM),该模块将自适应通道注意力机制与混合扩张卷积金字塔池化模块融合。本文基于水下鱼类图像生成了 voc 格式的数据集,并使用该数据集验证本文提出的模型。平均交并比(MIoU)达到 92.6%。与其他传统分割模型相比,本文模型的分割结果的平均交并比(MIoU)、平均像素准确率(MPA)和平衡 F 分数(F1-score)分别提高了 1.84%、0.785%和 1.18%。实验结果表明,该模型的分割效果优于其他模型,为水下鱼类体长测量、体重估计和生长及健康状况判别等智能监测提供了理论依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验