Suppr超能文献

基于对比增强 T1 加权和 T2 加权磁共振成像序列及人工智能的前庭神经鞘瘤和内耳自动放射组学分析

Automated Radiomic Analysis of Vestibular Schwannomas and Inner Ears Using Contrast-Enhanced T1-Weighted and T2-Weighted Magnetic Resonance Imaging Sequences and Artificial Intelligence.

机构信息

Department of Otolaryngology-Head and Neck Surgery, Stanford University.

出版信息

Otol Neurotol. 2023 Sep 1;44(8):e602-e609. doi: 10.1097/MAO.0000000000003959. Epub 2023 Jul 18.

Abstract

OBJECTIVE

To objectively evaluate vestibular schwannomas (VSs) and their spatial relationships with the ipsilateral inner ear (IE) in magnetic resonance imaging (MRI) using deep learning.

STUDY DESIGN

Cross-sectional study.

PATIENTS

A total of 490 adults with VS, high-resolution MRI scans, and no previous neurotologic surgery.

INTERVENTIONS

MRI studies of VS patients were split into training (390 patients) and test (100 patients) sets. A three-dimensional convolutional neural network model was trained to segment VS and IE structures using contrast-enhanced T1-weighted and T2-weighted sequences, respectively. Manual segmentations were used as ground truths. Model performance was evaluated on the test set and on an external set of 100 VS patients from a public data set (Vestibular-Schwannoma-SEG).

MAIN OUTCOME MEASURES

Dice score, relative volume error, average symmetric surface distance, 95th-percentile Hausdorff distance, and centroid locations.

RESULTS

Dice scores for VS and IE volume segmentations were 0.91 and 0.90, respectively. On the public data set, the model segmented VS tumors with a Dice score of 0.89 ± 0.06 (mean ± standard deviation), relative volume error of 9.8 ± 9.6%, average symmetric surface distance of 0.31 ± 0.22 mm, and 95th-percentile Hausdorff distance of 1.26 ± 0.76 mm. Predicted VS segmentations overlapped with ground truth segmentations in all test subjects. Mean errors of predicted VS volume, VS centroid location, and IE centroid location were 0.05 cm 3 , 0.52 mm, and 0.85 mm, respectively.

CONCLUSIONS

A deep learning system can segment VS and IE structures in high-resolution MRI scans with excellent accuracy. This technology offers promise to improve the clinical workflow for assessing VS radiomics and enhance the management of VS patients.

摘要

目的

使用深度学习客观评估磁共振成像(MRI)中的前庭神经鞘瘤(VS)及其与同侧内耳(IE)的空间关系。

研究设计

横断面研究。

患者

共纳入 490 例 VS 患者,均行高分辨率 MRI 扫描,且均无既往神经耳科手术史。

干预措施

将 VS 患者的 MRI 研究分为训练集(390 例患者)和测试集(100 例患者)。使用三维卷积神经网络模型分别对增强 T1 加权和 T2 加权序列的 VS 和 IE 结构进行分割。采用手动分割作为金标准。在测试集和来自公共数据集(Vestibular-Schwannoma-SEG)的 100 例 VS 患者的外部数据集上评估模型性能。

主要观察指标

Dice 评分、相对体积误差、平均对称面距离、95%Hausdorff 距离和质心位置。

结果

VS 和 IE 体积分割的 Dice 评分分别为 0.91 和 0.90。在公共数据集上,模型对 VS 肿瘤的分割 Dice 评分为 0.89±0.06(平均值±标准差),相对体积误差为 9.8%±9.6%,平均对称面距离为 0.31±0.22mm,95%Hausdorff 距离为 1.26±0.76mm。所有测试对象的预测 VS 分割均与真实分割重叠。预测 VS 体积、VS 质心位置和 IE 质心位置的平均误差分别为 0.05cm 3 、0.52mm 和 0.85mm。

结论

深度学习系统可以高精度分割高分辨率 MRI 扫描中的 VS 和 IE 结构。这项技术有望改善评估 VS 放射组学的临床工作流程,并增强 VS 患者的管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验