Department of Otolaryngology-Head and Neck Surgery, Stanford University.
Otol Neurotol. 2023 Sep 1;44(8):e602-e609. doi: 10.1097/MAO.0000000000003959. Epub 2023 Jul 18.
To objectively evaluate vestibular schwannomas (VSs) and their spatial relationships with the ipsilateral inner ear (IE) in magnetic resonance imaging (MRI) using deep learning.
Cross-sectional study.
A total of 490 adults with VS, high-resolution MRI scans, and no previous neurotologic surgery.
MRI studies of VS patients were split into training (390 patients) and test (100 patients) sets. A three-dimensional convolutional neural network model was trained to segment VS and IE structures using contrast-enhanced T1-weighted and T2-weighted sequences, respectively. Manual segmentations were used as ground truths. Model performance was evaluated on the test set and on an external set of 100 VS patients from a public data set (Vestibular-Schwannoma-SEG).
Dice score, relative volume error, average symmetric surface distance, 95th-percentile Hausdorff distance, and centroid locations.
Dice scores for VS and IE volume segmentations were 0.91 and 0.90, respectively. On the public data set, the model segmented VS tumors with a Dice score of 0.89 ± 0.06 (mean ± standard deviation), relative volume error of 9.8 ± 9.6%, average symmetric surface distance of 0.31 ± 0.22 mm, and 95th-percentile Hausdorff distance of 1.26 ± 0.76 mm. Predicted VS segmentations overlapped with ground truth segmentations in all test subjects. Mean errors of predicted VS volume, VS centroid location, and IE centroid location were 0.05 cm 3 , 0.52 mm, and 0.85 mm, respectively.
A deep learning system can segment VS and IE structures in high-resolution MRI scans with excellent accuracy. This technology offers promise to improve the clinical workflow for assessing VS radiomics and enhance the management of VS patients.
使用深度学习客观评估磁共振成像(MRI)中的前庭神经鞘瘤(VS)及其与同侧内耳(IE)的空间关系。
横断面研究。
共纳入 490 例 VS 患者,均行高分辨率 MRI 扫描,且均无既往神经耳科手术史。
将 VS 患者的 MRI 研究分为训练集(390 例患者)和测试集(100 例患者)。使用三维卷积神经网络模型分别对增强 T1 加权和 T2 加权序列的 VS 和 IE 结构进行分割。采用手动分割作为金标准。在测试集和来自公共数据集(Vestibular-Schwannoma-SEG)的 100 例 VS 患者的外部数据集上评估模型性能。
Dice 评分、相对体积误差、平均对称面距离、95%Hausdorff 距离和质心位置。
VS 和 IE 体积分割的 Dice 评分分别为 0.91 和 0.90。在公共数据集上,模型对 VS 肿瘤的分割 Dice 评分为 0.89±0.06(平均值±标准差),相对体积误差为 9.8%±9.6%,平均对称面距离为 0.31±0.22mm,95%Hausdorff 距离为 1.26±0.76mm。所有测试对象的预测 VS 分割均与真实分割重叠。预测 VS 体积、VS 质心位置和 IE 质心位置的平均误差分别为 0.05cm 3 、0.52mm 和 0.85mm。
深度学习系统可以高精度分割高分辨率 MRI 扫描中的 VS 和 IE 结构。这项技术有望改善评估 VS 放射组学的临床工作流程,并增强 VS 患者的管理。