Suppr超能文献

使用深度学习模型进行前庭神经鞘瘤分割的准确性——一项系统评价与荟萃分析。

Accuracy of vestibular schwannoma segmentation using deep learning models - a systematic review & meta-analysis.

作者信息

Łajczak Paweł, Matyja Jakub, Jóźwik Kamil, Nawrat Zbigniew

机构信息

Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 18, Mekelweg 5, Zabrze, 40-043,, Poland.

TU Delft, Mekelweg 5,, Delft 2628 CD,, Netherlands.

出版信息

Neuroradiology. 2025 Mar;67(3):729-742. doi: 10.1007/s00234-024-03449-1. Epub 2024 Aug 24.

Abstract

UNLABELLED

Vestibular Schwannoma (VS) is a rare tumor with varied incidence rates, predominantly affecting the 60-69 age group. In the era of artificial intelligence (AI), deep learning (DL) algorithms show promise in automating diagnosis. However, a knowledge gap exists in the automated segmentation of VS using DL. To address this gap, this meta-analysis aims to provide insights into the current state of DL algorithms applied to MR images of VS.

METHODOLOGY

Following 2020 PRISMA guidelines, a search across four databases was conducted. Inclusion criteria focused on articles using DL for VS MR image segmentation. The primary metric was the Dice score, supplemented by relative volume error (RVE) and average symmetric surface distance (ASSD).

RESULTS

The search process identified 752 articles, leading to 11 studies for meta-analysis. A QUADAS- 2 analysis revealed varying biases. The overall Dice score for 56 models was 0.89 (CI: 0.88-0.90), with high heterogeneity (I2 = 95.9%). Subgroup analyses based on DL architecture, MRI inputs, and testing set sizes revealed performance variations. 2.5D DL networks demonstrated comparable efficacy to 3D networks. Imaging input analyses highlighted the superiority of contrast-enhanced T1-weighted imaging and mixed MRI inputs.

DISCUSSION

This study fills a gap in systematic review in the automated segmentation of VS using DL techniques. Despite promising results, limitations include publication bias and high heterogeneity. Future research should focus on standardized designs, larger testing sets, and addressing biases for more reliable results. DL have promising efficacy in VS diagnosis, however further validation and standardization is needed.

CONCLUSION

In conclusion, this meta-analysis provides comprehensive review into the current landscape of automated VS segmentation using DL. The high Dice score indicates promising agreement in segmentation, yet challenges like bias and heterogeneity must be addressed in the future research.

摘要

未标注

前庭神经鞘瘤(VS)是一种发病率各异的罕见肿瘤,主要影响60 - 69岁年龄组。在人工智能(AI)时代,深度学习(DL)算法在自动化诊断方面显示出前景。然而,在使用DL对VS进行自动分割方面存在知识空白。为填补这一空白,本荟萃分析旨在深入了解应用于VS磁共振成像(MR)的DL算法的当前状况。

方法

遵循2020年PRISMA指南,对四个数据库进行了检索。纳入标准集中于使用DL进行VS MR图像分割的文章。主要指标是Dice分数,辅以相对体积误差(RVE)和平均对称表面距离(ASSD)。

结果

检索过程共识别出752篇文章,最终纳入11项研究进行荟萃分析。QUADAS - 2分析显示存在不同程度的偏倚。56个模型的总体Dice分数为0.89(置信区间:0.88 - 0.90),异质性较高(I2 = 95.9%)。基于DL架构、MRI输入和测试集大小的亚组分析显示了性能差异。2.5D DL网络显示出与3D网络相当的功效。成像输入分析突出了对比增强T1加权成像和混合MRI输入的优势。

讨论

本研究填补了使用DL技术对VS进行自动分割的系统评价空白。尽管结果令人鼓舞,但局限性包括发表偏倚和高异质性。未来研究应专注于标准化设计、更大的测试集以及解决偏倚问题以获得更可靠的结果。DL在VS诊断中具有有前景的功效,但仍需要进一步验证和标准化。

结论

总之,本荟萃分析全面回顾了使用DL进行VS自动分割的当前状况。高Dice分数表明在分割方面有前景的一致性,但偏倚和异质性等挑战必须在未来研究中加以解决。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b934/12003617/5a5062cbc532/234_2024_3449_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验