Suppr超能文献

使用超参数化深度神经网络对步态中关节接触力时间序列进行平滑且准确的预测。

Smooth and accurate predictions of joint contact force time-series in gait using over parameterised deep neural networks.

作者信息

Liew Bernard X W, Rügamer David, Mei Qichang, Altai Zainab, Zhu Xuqi, Zhai Xiaojun, Cortes Nelson

机构信息

School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, United Kingdom.

Department of Statistics, Ludwig-Maximilians-Universität München, Munich, Germany.

出版信息

Front Bioeng Biotechnol. 2023 Jul 3;11:1208711. doi: 10.3389/fbioe.2023.1208711. eCollection 2023.

Abstract

Alterations in joint contact forces (JCFs) are thought to be important mechanisms for the onset and progression of many musculoskeletal and orthopaedic pain disorders. Computational approaches to JCFs assessment represent the only non-invasive means of estimating forces; but this cannot be undertaken in free-living environments. Here, we used deep neural networks to train models to predict JCFs, using only joint angles as predictors. Our neural network models were generally able to predict JCFs with errors within published minimal detectable change values. The errors ranged from the lowest value of 0.03 bodyweight (BW) (ankle medial-lateral JCF in walking) to a maximum of 0.65BW (knee VT JCF in running). Interestingly, we also found that over parametrised neural networks by training on longer epochs (>100) resulted in better and smoother waveform predictions. Our methods for predicting JCFs using only joint kinematics hold a lot of promise in allowing clinicians and coaches to continuously monitor tissue loading in free-living environments.

摘要

关节接触力(JCFs)的改变被认为是许多肌肉骨骼和骨科疼痛疾病发生和发展的重要机制。评估JCFs的计算方法是估计力的唯一非侵入性手段;但这无法在自由生活环境中进行。在这里,我们使用深度神经网络训练模型来预测JCFs,仅将关节角度作为预测因子。我们的神经网络模型通常能够预测JCFs,误差在已发表的最小可检测变化值范围内。误差范围从最低的0.03体重(BW)(步行时踝关节内外侧JCF)到最高的0.65BW(跑步时膝关节VT JCF)。有趣的是,我们还发现,通过在更长的轮次(>100)上进行训练,过度参数化的神经网络会产生更好、更平滑的波形预测。我们仅使用关节运动学来预测JCFs的方法在允许临床医生和教练在自由生活环境中持续监测组织负荷方面具有很大的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e466/10350628/0dec9a0f8ce8/fbioe-11-1208711-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验