Suppr超能文献

预测多种步行任务期间的生物关节力矩。

Predicting biological joint moment during multiple ambulation tasks.

作者信息

Camargo Jonathan, Molinaro Dean, Young Aaron

机构信息

Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Institute for Robotics and Intelligent Machines (IRIM), Georgia Institute of Technology, Atlanta, GA, USA.

Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Institute for Robotics and Intelligent Machines (IRIM), Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

J Biomech. 2022 Mar;134:111020. doi: 10.1016/j.jbiomech.2022.111020. Epub 2022 Feb 24.

Abstract

Combining machine learning models with wearable sensing provides a key technique for understanding the biological effort, creating an alternative to inverse dynamics based on motion capture. In this study, we demonstrate a novel approach to not only estimate but predict the joint moment in advance for multiple ambulation modes. By combining electromyography (EMG), inertial measurement units (IMU), and electrogoniometers, we enable the prediction of the joint moment only from wearable sensors. We performed a forward feature selection to determine the best feature sets for different anticipation times of the intended moment generated at the hip, knee, and ankle, encompassing level walking on a treadmill and ascent/descent of stairs and ramps. We show that wearable sensors can predict the joint moment with an MAE of 0.06 ± 0.02 Nm/kg for direct estimation and an MAE of 0.10 ± 0.04 Nm/kg when predicting 150 ms in advance, corresponding to an MAE within 9.2% of the joint moment range. We found that the hip moment had a significantly lower error than the knee and ankle when anticipating the joint moment (Bonferroni test, p < 0.05). The accurate estimation of the joint moment could monitor user activity to reduce risk factors and inform the control of exoskeletons.

摘要

将机器学习模型与可穿戴传感相结合,为理解生物力学努力提供了一项关键技术,为基于动作捕捉的逆动力学创造了一种替代方法。在本研究中,我们展示了一种新颖的方法,不仅可以估计,还能提前预测多种步行模式下的关节力矩。通过结合肌电图(EMG)、惯性测量单元(IMU)和电子测角仪,我们仅利用可穿戴传感器就能实现关节力矩的预测。我们进行了前向特征选择,以确定针对髋、膝和踝关节产生的预期力矩在不同预测时间的最佳特征集,包括在跑步机上的水平行走以及上下楼梯和斜坡。我们表明,可穿戴传感器在直接估计时预测关节力矩的平均绝对误差(MAE)为0.06±0.02 Nm/kg,提前150毫秒预测时MAE为0.10±0.04 Nm/kg,相当于在关节力矩范围的9.2%以内。我们发现,在预测关节力矩时,髋部力矩的误差明显低于膝部和踝部(Bonferroni检验,p<0.05)。关节力矩的准确估计可以监测用户活动,以降低风险因素并为外骨骼的控制提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验