Mithun K P, Tripathi Shalini, Roy Ahin, Ravishankar N, Sood A K
Center for Ultrafast Laser Applications, Indian Institute of Science, Bangalore 560012, India.
Department of Physics, Indian Institute of Science, Bangalore 560012, India.
Nanoscale. 2023 Aug 3;15(30):12670-12678. doi: 10.1039/d3nr01588b.
We report carrier relaxation dynamics in semiconducting tellurium nanowires (average diameter ∼ 10 nm) using ultrafast time-resolved terahertz spectroscopy. After photoexcitation using an 800 nm pump pulse, we observed an initial increase in the THz conductivity due to the absorption of THz radiation by photoexcited carriers. The time evolution of the differential conductivity (Δ() = () - ) shows a bi-exponential relaxation with the initial fast decay time scale of ∼ 25 ps followed by a longer relaxation time constant of ∼ 100 ps. Interestingly, the two time scales depend on the amount of the capping agent present on the surface of TeNWs, showing a faster relaxation of the photoexcited carriers as the percentage of capping decreases. This is physically interpreted as the surface state mediated relaxation mechanism of the photo-pumped carriers depending on the density of available surface states. A quantitative understanding is obtained using a coupled rate equation model taking into account the decay mechanisms determined from the surface mediated relaxation rate () and direct recombination rate () of the electron-hole pairs. Furthermore, the measured lattice temperature () dependent dynamics, showing a faster relaxation at lower temperature, is understood using the same rate equation model, giving a power law dependence of the electron-hole recombination rate () on as ∝ . This is explained by estimating using the van Roosbroeck-Shockley theory taking into account the density of states () of one-dimensional nanowires. Furthermore, to understand the measured frequency-dependent THz photoconductivity, we model Δ() using the Boltzmann transport equation taking into account the energy-dependent scattering rates showing the dominant role of short range () and Coulomb scattering () rates in the relaxation process, which further provides a measure of the charged and neutral impurity concentrations.
我们使用超快时间分辨太赫兹光谱技术,报道了半导体碲纳米线(平均直径约10纳米)中的载流子弛豫动力学。在用800纳米泵浦脉冲进行光激发后,我们观察到太赫兹电导率最初增加,这是由于光激发载流子对太赫兹辐射的吸收所致。微分电导率的时间演化(Δ(σ) = σ(t) - σ(0))呈现双指数弛豫,初始快速衰减时间尺度约为25皮秒,随后是较长的弛豫时间常数约为100皮秒。有趣的是,这两个时间尺度取决于碲纳米线表面存在的封端剂的量,随着封端剂百分比的降低,光激发载流子的弛豫更快。这从物理上解释为光泵浦载流子的表面态介导弛豫机制取决于可用表面态的密度。通过考虑由电子 - 空穴对的表面介导弛豫速率(Γ)和直接复合速率(β)确定的衰减机制的耦合速率方程模型,获得了定量理解。此外,使用相同的速率方程模型可以理解所测量的晶格温度(Tl)依赖的动力学,即在较低温度下弛豫更快,这给出了电子 - 空穴复合速率(β)对Tl的幂律依赖关系,即β ∝ Tl^(-3/2)。这是通过考虑一维纳米线的态密度(DOS),使用范罗思布罗克 - 肖克利理论估计Tl来解释的。此外,为了理解所测量的频率依赖的太赫兹光电导率,我们使用玻尔兹曼输运方程对Δ(σ)进行建模,该方程考虑了能量依赖的散射速率,表明短程(τs)和库仑散射(τc)速率在弛豫过程中起主导作用,这进一步提供了带电和中性杂质浓度的度量。