Suppr超能文献

基于图卷积网络的车辆排放自监督时空聚类

Self-Supervised Spatiotemporal Clustering of Vehicle Emissions With Graph Convolutional Network.

作者信息

Pei Lihong, Cao Yang, Kang Yu, Xu Zhenyi, Zhao Zhenyi

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Nov;35(11):16301-16312. doi: 10.1109/TNNLS.2023.3293463. Epub 2024 Oct 29.

Abstract

Spatiotemporal clustering of vehicle emissions, which reveals the evolution pattern of air pollution from road traffic, is a challenging representation learning task due to the lack of supervision. Some recent work building upon graph convolutional network (GCN) models the intrinsic spatiotemporal correlations among the nodes in road networks as graph representations for clustering. However, these existing methods ignore the interactions between spatial and temporal variations in vehicle emissions, resulting in incomplete descriptions and inaccurate detection of the evolution pattern of air pollution. To address this issue, this article proposes a two-way self-supervised spatiotemporal representation learning scheme, in which the temporal and spatial features are progressively learned in a mutually reinforced manner. Our proposed method is based on the observation that though the variation in vehicle emissions in the road network is consistent in the spatial and temporal domains, its expression is more distinct in temporal sequences. To this end, the input emission data are first projected into an initial temporal representation space spanned by the captured features from a pretrained BiLSTM network. Then the generated distribution of temporal features is used to construct an objective constraint for high-purity clustering through a two-way self-supervised mechanism, which is leveraged as a constraint for the feature clustering of a GCN. Furthermore, to eliminate the initial errors, a joint optimization scheme is presented to generate the decoupled clustering results through the progressive refinement of representation and clustering. Our proposed method is evaluated on the traffic emission dataset of Xian city in 2020, and the experimental results have demonstrated the superiority against the state-of-the-art.

摘要

车辆排放的时空聚类揭示了道路交通空气污染的演变模式,由于缺乏监督,这是一项具有挑战性的表征学习任务。最近一些基于图卷积网络(GCN)的工作将道路网络中节点之间的内在时空相关性建模为用于聚类的图表示。然而,这些现有方法忽略了车辆排放中空间和时间变化之间的相互作用,导致对空气污染演变模式的描述不完整且检测不准确。为了解决这个问题,本文提出了一种双向自监督时空表征学习方案,其中时间和空间特征以相互强化的方式逐步学习。我们提出的方法基于这样的观察,即尽管道路网络中车辆排放的变化在空间和时间域中是一致的,但其在时间序列中的表现更为明显。为此,首先将输入的排放数据投影到一个由预训练的双向长短期记忆(BiLSTM)网络捕获的特征所跨越的初始时间表征空间中。然后,通过双向自监督机制,将生成的时间特征分布用于构建高纯度聚类的目标约束,该约束被用作GCN特征聚类的约束。此外,为了消除初始误差,提出了一种联合优化方案,通过逐步细化表征和聚类来生成解耦的聚类结果。我们提出的方法在西安市2020年的交通排放数据集上进行了评估,实验结果证明了其相对于现有最先进方法的优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验