Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands.
Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2304992120. doi: 10.1073/pnas.2304992120. Epub 2023 Jul 19.
To become established upon zoonotic transfer, influenza A viruses (IAV) need to switch binding from "avian-type" α2-3-linked sialic acid receptors (2-3Sia) to "human-type" Siaα2-6-linked sialic acid receptors (2-6Sia). For the 1968 H3N2 pandemic virus, this was accomplished by two canonical amino acid substitutions in its hemagglutinin (HA) although a full specificity shift had not occurred. The receptor repertoire on epithelial cells is highly diverse and simultaneous interaction of a virus particle with a range of low- to very low-affinity receptors results in tight heteromultivalent binding. How this range of affinities determines binding selectivity and virus motility remains largely unknown as the analysis of low-affinity monovalent HA-receptor interactions is technically challenging. Here, a biolayer interferometry assay enabled a comprehensive analysis of receptor-binding kinetics evolution upon host-switching. Virus-binding kinetics of H3N2 virus isolates slowly evolved from 1968 to 1979 from mixed 2-3/2-6Sia specificity to high 2-6Sia specificity, surprisingly followed by a decline in selectivity after 1992. By using genetically tuned HEK293 cells, presenting either a simplified 2-3Sia- or 2-6Sia-specific receptor repertoire, receptor-specific binding was shown to correlate strongly with receptor-specific entry. In conclusion, the slow and continuous evolution of entry and receptor-binding specificity of seasonal H3N2 viruses contrasts with the paradigm that human IAVs need to rapidly acquire and maintain a high specificity for 2-6Sia. Analysis of the kinetic parameters of receptor binding provides a basis for understanding virus-binding specificity, motility, and HA/neuraminidase balance at the molecular level.
为了在人畜共患病传播中立足,甲型流感病毒(IAV)需要从“禽源型”α2-3 连接唾液酸受体(2-3Sia)切换到“人源型”Siaα2-6 连接唾液酸受体(2-6Sia)。对于 1968 年的 H3N2 大流行病毒,其血凝素(HA)中的两个典型氨基酸取代实现了这一转变,尽管尚未完全发生特异性转变。上皮细胞上的受体谱高度多样化,病毒颗粒与一系列低亲和力至极低亲和力受体的同时相互作用导致紧密的异多价结合。这种亲和力范围如何决定结合选择性和病毒迁移性在很大程度上仍然未知,因为分析低亲和力单价 HA-受体相互作用在技术上具有挑战性。在这里,生物层干涉测定法使我们能够全面分析宿主转换过程中受体结合动力学的演变。1968 年至 1979 年,H3N2 病毒分离株的病毒结合动力学从混合的 2-3/2-6Sia 特异性缓慢进化为高 2-6Sia 特异性,令人惊讶的是,1992 年后选择性下降。通过使用遗传修饰的 HEK293 细胞,展示简化的 2-3Sia 或 2-6Sia 特异性受体谱,证明了受体特异性结合与受体特异性进入密切相关。总之,季节性 H3N2 病毒的进入和受体结合特异性的缓慢连续进化与人类 IAV 需要快速获得并维持对 2-6Sia 的高特异性的范例形成对比。受体结合动力学参数的分析为理解病毒结合特异性、迁移性以及分子水平上 HA/神经氨酸酶平衡提供了基础。