Suppr超能文献

酿酒酵母 hnRNP 蛋白 Hrp1 对转录自调控和非编码 RNA 终止起重要作用的结构域和残基。

Domains and residues of the Saccharomyces cerevisiae hnRNP protein Hrp1 important for transcriptional autoregulation and noncoding RNA termination.

机构信息

Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.

出版信息

Genetics. 2023 Aug 31;225(1). doi: 10.1093/genetics/iyad134.

Abstract

Proteins that bind the nascent transcript exiting RNA polymerase II can regulate transcription elongation. The essential Saccharomyces cerevisiae hnRNP protein Hrp1 is one such protein and participates in both cleavage and polyadenylation-coupled and Nrd1-Nab3-Sen1-dependent RNA polymerase II termination. Prior evidence that Hrp1 is a positive RNA polymerase II elongation factor suggests that its release from the elongation complex promotes termination. Here we report the effects of deletions and substitutions in Hrp1 on its autoregulation via an Nrd1-Nab3-Sen1-dependent transcription attenuator in the 5'-UTR of its mRNA and on the function of an Hrp1-dependent Nrd1-Nab3-Sen1 terminator in the SNR82 snoRNA gene. Deletion of either of two central RNA recognition motifs or either of the flanking low-sequence complexity domains is lethal. Smaller, viable deletions in the amino-terminal low-sequence complexity domain cause readthrough of both the HRP1 attenuator and SNR82 terminator. Substitutions that cause readthrough localized mostly to the RNA recognition motifs, although not always to the RNA-binding face. We found that autoregulation of Hrp1 mRNA synthesis is surprisingly robust, overcoming the expected lethal effects of the start codon and frameshift mutations via overexpression of the mRNA up to 40-fold. Our results suggest a model in which binding of attenuator or terminator elements in the nascent transcript by RNA recognition motifs 1 and 2 disrupts interactions between RNA recognition motif 2 and the RNA polymerase II elongation complex, increasing its susceptibility to termination.

摘要

与 RNA 聚合酶 II 新生转录本结合的蛋白质可以调节转录延伸。必需的酿酒酵母 hnRNP 蛋白 Hrp1 就是这样一种蛋白质,它参与了切割和多腺苷酸化偶联以及 Nrd1-Nab3-Sen1 依赖性 RNA 聚合酶 II 终止。先前有证据表明 Hrp1 是 RNA 聚合酶 II 延伸因子的阳性调节剂,这表明它从延伸复合物中的释放促进了终止。在这里,我们报告了 Hrp1 中的缺失和取代对其自身调节的影响,这种自身调节是通过其 mRNA 5'UTR 中的 Nrd1-Nab3-Sen1 依赖性转录衰减子实现的,以及通过 Hrp1 依赖性 Nrd1-Nab3-Sen1 终止子在 SNR82 snoRNA 基因中的功能。两个中央 RNA 识别基序中的任一个或两个侧翼低序列复杂度结构域的缺失都是致命的。氨基末端低序列复杂度结构域中的较小、存活的缺失会导致 HRP1 衰减子和 SNR82 终止子的通读。导致通读的取代主要定位于 RNA 识别基序,尽管并非总是定位于 RNA 结合面。我们发现 Hrp1 mRNA 合成的自身调节非常稳健,通过高达 40 倍的 mRNA 过表达克服了起始密码子和移码突变的预期致死效应。我们的结果表明了一个模型,即 RNA 识别基序 1 和 2 对新生转录本中衰减子或终止子元件的结合破坏了 RNA 识别基序 2 与 RNA 聚合酶 II 延伸复合物之间的相互作用,从而增加了终止的易感性。

相似文献

4
A network of interdependent molecular interactions describes a higher order Nrd1-Nab3 complex involved in yeast transcription termination.
J Biol Chem. 2013 Nov 22;288(47):34158-34167. doi: 10.1074/jbc.M113.516765. Epub 2013 Oct 7.
6
The exosome component Rrp6 is required for RNA polymerase II termination at specific targets of the Nrd1-Nab3 pathway.
PLoS Genet. 2015 Feb 13;11(2):e1004999. doi: 10.1371/journal.pgen.1004999. eCollection 2015.
7
Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts.
Mol Cell Biol. 2004 Jul;24(14):6241-52. doi: 10.1128/MCB.24.14.6241-6252.2004.
8
Identification of Three Sequence Motifs in the Transcription Termination Factor Sen1 that Mediate Direct Interactions with Nrd1.
Structure. 2019 Jul 2;27(7):1156-1161.e4. doi: 10.1016/j.str.2019.04.005. Epub 2019 May 16.
9
RNA Polymerase II CTD phosphatase Rtr1 fine-tunes transcription termination.
PLoS Genet. 2020 Mar 18;16(3):e1008317. doi: 10.1371/journal.pgen.1008317. eCollection 2020 Mar.

本文引用的文献

1
Knowing when to stop: Transcription termination on protein-coding genes by eukaryotic RNAPII.
Mol Cell. 2023 Feb 2;83(3):404-415. doi: 10.1016/j.molcel.2022.12.021. Epub 2023 Jan 11.
2
Integrator is a global promoter-proximal termination complex.
Mol Cell. 2023 Feb 2;83(3):416-427. doi: 10.1016/j.molcel.2022.11.012. Epub 2023 Jan 11.
5
Clustering of Aromatic Amino Acid Residues around Methionine in Proteins.
Biomolecules. 2021 Dec 21;12(1):6. doi: 10.3390/biom12010006.
6
A ubiquitous disordered protein interaction module orchestrates transcription elongation.
Science. 2021 Nov 26;374(6571):1113-1121. doi: 10.1126/science.abe2913. Epub 2021 Nov 25.
8
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
10
Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation.
Nat Rev Neurosci. 2021 Apr;22(4):197-208. doi: 10.1038/s41583-021-00431-1. Epub 2021 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验