Suppr超能文献

基于深度学习的药物重定位筛选和验证抗 SARS-CoV-2 化合物通过靶向细胞进入机制。

A deep learning-based drug repurposing screening and validation for anti-SARS-CoV-2 compounds by targeting the cell entry mechanism.

机构信息

Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, 110819, China.

Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.

出版信息

Biochem Biophys Res Commun. 2023 Oct 1;675:113-121. doi: 10.1016/j.bbrc.2023.07.018. Epub 2023 Jul 12.

Abstract

The recent outbreak of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a severe threat to the global public health and economy, however, effective drugs to treat COVID-19 are still lacking. Here, we employ a deep learning-based drug repositioning strategy to systematically screen potential anti-SARS-CoV-2 drug candidates that target the cell entry mechanism of SARS-CoV-2 virus from 2635 FDA-approved drugs and 1062 active ingredients from Traditional Chinese Medicine herbs. In silico molecular docking analysis validates the interactions between the top compounds and host receptors or viral spike proteins. Using a SARS-CoV-2 pseudovirus system, we further identify several drug candidates including Fostamatinib, Linagliptin, Lysergol and Sophoridine that can effectively block the cell entry of SARS-CoV-2 variants into human lung cells even at a nanomolar scale. These efforts not only illuminate the feasibility of applying deep learning-based drug repositioning for antiviral agents by targeting a specified mechanism, but also provide a valuable resource of promising drug candidates or lead compounds to treat COVID-19.

摘要

新型冠状病毒病 2019(COVID-19)是由严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)引起的疫情,这对全球公共卫生和经济造成了严重威胁,然而,目前仍缺乏有效的 COVID-19 治疗药物。在这里,我们采用基于深度学习的药物再利用策略,从 2635 种美国食品和药物管理局批准的药物和 1062 种中药有效成分中,系统筛选针对 SARS-CoV-2 病毒细胞进入机制的潜在抗 SARS-CoV-2 药物候选物。计算机分子对接分析验证了这些顶级化合物与宿主受体或病毒刺突蛋白之间的相互作用。通过 SARS-CoV-2 假病毒系统,我们进一步鉴定了几种药物候选物,包括 fostamatinib、linagliptin、lysergol 和槐定碱,它们可以有效阻止 SARS-CoV-2 变体进入人肺细胞的细胞进入,即使在纳摩尔级也有效果。这些努力不仅阐明了通过针对特定机制应用基于深度学习的药物再利用来寻找抗病毒药物的可行性,还为治疗 COVID-19 提供了有前途的药物候选物或先导化合物的宝贵资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验