Suppr超能文献

机器学习模型在一项前瞻性队列研究中预测肝脂肪变性,但不能预测肝纤维化。

Machine learning models predict liver steatosis but not liver fibrosis in a prospective cohort study.

机构信息

Fondazione Bruno Kessler Research Institute, Trento, Italy.

Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria.

出版信息

Clin Res Hepatol Gastroenterol. 2023 Aug;47(7):102181. doi: 10.1016/j.clinre.2023.102181. Epub 2023 Jul 17.

Abstract

INTRODUCTION

Screening for liver fibrosis continues to rely on laboratory panels and non-invasive tests such as FIB-4-score and transient elastography. In this study, we evaluated the potential of machine learning (ML) methods to predict liver steatosis on abdominal ultrasound and liver fibrosis, namely the intermediate-high risk of advanced fibrosis, in individuals participating in a screening program for colorectal cancer.

METHODS

We performed ultrasound on 5834 patients admitted between 2006 and 2020, and transient elastography on a subset of 1240 patients. Steatosis on ultrasound was diagnosed if liver areas showed a significantly increased echogenicity compared to the renal parenchyma. Liver fibrosis was defined as a liver stiffness measurement ≥8 kPa in transient elastography. We evaluated the performance of three algorithms, namely Extreme Gradient Boosting, Feed-Forward neural network and Logistic Regression, deriving the models using data from patients admitted from January 2007 up to January 2016 and prospectively evaluating on the data of patients admitted from January 2016 up to March 2020. We also performed a performance comparison with the standard clinical test based on Fibrosis-4 Index (FIB-4).

RESULTS

The mean age was 58±9 years with 3036 males (52%). Modelling laboratory parameters, clinical parameters, and data on eight food types/dietary patterns, we achieved high performance in predicting liver steatosis on ultrasound with AUC of 0.87 (95% CI [0.87-0.87]), and moderate performance in predicting liver fibrosis with AUC of 0.75 (95% CI [0.74-0.75]) using XGBoost machine learning algorithm. Patient-reported variables did not significantly improve predictive performance. Gender-specific analyses showed significantly higher performance in males with AUC of 0.74 (95% CI [0.73-0.74]) in comparison to female patients with AUC of 0.66 (95% CI [0.65-0.66]) in prediction of liver fibrosis. This difference was significantly smaller in prediction of steatosis with AUC of 0.85 (95% CI [0.83-0.87]) in female patients, in comparison to male patients with AUC of 0.82 (95% CI [0.80-0.84]).

CONCLUSION

ML based on point-prevalence laboratory and clinical information predicts liver steatosis with high accuracy and liver fibrosis with moderate accuracy. The observed gender differences suggest the need to develop gender-specific models.

摘要

简介

肝纤维化的筛查仍然依赖于实验室指标和非侵入性检查,如 FIB-4 评分和瞬时弹性成像。本研究评估了机器学习 (ML) 方法在预测腹部超声肝脂肪变性和肝纤维化(即中高度纤维化风险)方面的潜力,这些患者均参加了结直肠癌筛查项目。

方法

我们对 2006 年至 2020 年间收治的 5834 名患者进行了超声检查,并对 1240 名患者中的一部分进行了瞬时弹性成像检查。如果肝区回声明显高于肾实质,则诊断为超声肝脂肪变性。瞬时弹性成像中,肝纤维化定义为肝脏硬度测量值≥8kPa。我们评估了三种算法的性能,即极端梯度增强、前馈神经网络和逻辑回归,使用 2007 年 1 月至 2016 年 1 月期间入院患者的数据得出模型,并前瞻性评估 2016 年 1 月至 2020 年 3 月期间入院患者的数据。我们还与基于纤维化-4 指数(FIB-4)的标准临床检验进行了性能比较。

结果

平均年龄为 58±9 岁,男性 3036 人(52%)。通过对实验室参数、临床参数以及 8 种食物类型/饮食模式的数据进行建模,我们使用 XGBoost 机器学习算法实现了对超声肝脂肪变性的高预测性能,AUC 为 0.87(95%CI [0.87-0.87]),对肝纤维化的预测性能为中等,AUC 为 0.75(95%CI [0.74-0.75])。患者报告的变量并不能显著提高预测性能。性别特异性分析显示,男性患者预测肝纤维化的 AUC 为 0.74(95%CI [0.73-0.74]),显著高于女性患者的 AUC 为 0.66(95%CI [0.65-0.66]),而女性患者预测肝脂肪变性的 AUC 为 0.85(95%CI [0.83-0.87]),显著高于男性患者的 AUC 为 0.82(95%CI [0.80-0.84])。

结论

基于点患病率实验室和临床信息的 ML 可高度准确地预测肝脂肪变性,中等准确地预测肝纤维化。观察到的性别差异表明需要开发性别特异性模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验