Suppr超能文献

利用贝叶斯层次模型和协变量存在时的倾向评分来利用外部证据。

Leveraging external evidence using Bayesian hierarchical model and propensity score in the presence of covariates.

机构信息

Data and Statistical Sciences, AbbVie Inc., 1 N Waukegan Rd, North Chicago, IL 60064, USA.

出版信息

Contemp Clin Trials. 2023 Sep;132:107301. doi: 10.1016/j.cct.2023.107301. Epub 2023 Jul 17.

Abstract

In recent decades, there has been growing interest in leveraging external data information for clinical development as it improves the efficiency of the design and inference of clinical trials when utilized properly and more importantly, alleviates potential ethical and recruitment challenges. When it is of interest to augment the concurrent study's control arm using external control data, the potential outcome heterogeneity across data sources, also known as prior-data conflict, should be accounted for. In addition, in the outcome modeling, inclusion of prognostic covariates that may have impact on the outcome can avoid efficiency loss or potential bias. In this paper, we propose a Bayesian hierarchical modeling strategy incorporating covariate-adjusted meta-analytic predictive approach (cMAP) and also introduce a propensity score (PS) based sequential procedure that integrates the cMAP. In the simulation study, the proposed methods are found to have advantages in the estimation, power, and type I error control over the standard methods such as PS matching alone and hierarchical modeling that ignores the covariates. An illustrative example is used to illustrate the procedure.

摘要

近几十年来,人们越来越关注利用外部数据信息进行临床开发,因为当正确利用时,它可以提高临床试验的设计和推断效率,更重要的是,减轻潜在的伦理和招募挑战。当有兴趣利用外部对照数据来增强同期研究的对照臂时,应该考虑到数据来源之间的潜在结果异质性,也称为先验数据冲突。此外,在结果建模中,纳入可能对结果产生影响的预后协变量可以避免效率损失或潜在偏差。在本文中,我们提出了一种贝叶斯层次建模策略,该策略结合了协变量调整的荟萃分析预测方法 (cMAP),并引入了一种基于倾向评分 (PS) 的序贯程序,该程序整合了 cMAP。在模拟研究中,与仅使用 PS 匹配和忽略协变量的层次建模等标准方法相比,所提出的方法在估计、功效和 I 型错误控制方面具有优势。通过一个实例来说明该程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验