Suppr超能文献

用于单导联心电图心律失常检测的数据库和计算方法比较研究框架。

A framework for comparative study of databases and computational methods for arrhythmia detection from single-lead ECG.

机构信息

Department of Communication Systems, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.

Jožef Stefan International Postgraduate School, 1000, Ljubljana, Slovenia.

出版信息

Sci Rep. 2023 Jul 19;13(1):11682. doi: 10.1038/s41598-023-38532-9.

Abstract

Arrhythmia detection from ECG is an important area of computational ECG analysis. However, although a large number of public ECG recordings are available, most research uses only few datasets, making it difficult to estimate the generalizability of the plethora of ECG classification methods. Furthermore, there is a large variability in the evaluation procedures, as well as lack of insight into whether they could successfully perform in a real-world setup. To address these problems, we propose an open-source, flexible and configurable ECG classification codebase-ECGDL, as one of the first efforts that includes 9 arrhythmia datasets, covering a large number of both morphological and rhythmic arrhythmias, as well as 4 deep neural networks, 4 segmentation techniques and 4 evaluation schemes. We perform a comparative analysis along these framework components to provide a comprehensive perspective into arrhythmia classification, focusing on single-lead ECG as the most recent trend in wireless ECG monitoring. ECGDL unifies the class information representation in datasets by creating a label dictionary. Furthermore, it includes a set of the best-performing deep learning approaches with varying signal segmentation techniques and network architectures. A novel evaluation scheme, inter-patient cross-validation, has also been proposed to perform fair evaluation and comparison of results.

摘要

从心电图中检测心律失常是计算心电图分析的一个重要领域。然而,尽管有大量的公共心电图记录可用,但大多数研究仅使用少数数据集,这使得很难评估大量心电图分类方法的泛化能力。此外,评估过程存在很大的可变性,也缺乏关于它们是否能够在实际设置中成功执行的洞察力。为了解决这些问题,我们提出了一个开源的、灵活的和可配置的心电图分类代码库-ECGDL,这是第一个包含 9 个心律失常数据集的努力之一,涵盖了大量的形态和节律性心律失常,以及 4 个深度神经网络、4 个分割技术和 4 个评估方案。我们沿着这些框架组件进行了比较分析,提供了对心律失常分类的全面视角,重点关注单导联心电图作为无线心电图监测的最新趋势。ECGDL 通过创建标签字典,统一了数据集的类别信息表示。此外,它还包括了一套表现最佳的深度学习方法,具有不同的信号分割技术和网络架构。还提出了一种新颖的评估方案,即患者间交叉验证,以进行公平的评估和结果比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d72f/10356811/ca36979c40d4/41598_2023_38532_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验