Suppr超能文献

首次将ICON-FUV夜间NmF2和hmF2与地面及天基测量结果进行比较。

First ICON-FUV Nighttime NmF2 and hmF2 Comparison to Ground and Space-Based Measurements.

作者信息

Wautelet G, Hubert B, Gérard J-C, Immel T J, Frey H U, Mende S B, Kamalabadi F, Kamaci U, England S L

机构信息

Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Laboratoire de Physique Atmosphérique et Planétaire (LPAP), Université de Liège, Liège, Belgium.

Space Sciences Laboratory, University of California, Berkeley, Berkeley, CA, USA.

出版信息

J Geophys Res Space Phys. 2021 Nov;126(11). doi: 10.1029/2021ja029360. Epub 2021 Oct 21.

Abstract

The Far Ultra Violet (FUV) ultraviolet imager onboard the NASA-ICON mission is dedicated to the observation and study of the ionosphere dynamics at mid and low latitudes. We compare O density profiles provided by the ICON FUV instrument during nighttime with electron density profiles measured by the COSMIC-2 constellation (C2) and ground-based ionosondes. Co-located simultaneous observations are compared, covering the period from November 2019 to July 2020, which produces several thousands of coincidences. Manual scaling of ionogram sequences ensures the reliability of the ionosonde profiles, while C2 data are carefully selected using an automatic quality control algorithm. Photoelectron contribution coming from the magnetically conjugated hemisphere is clearly visible in FUV data around solstices and has been filtered out from our analysis. We find that the FUV observations are consistent with the C2 and ionosonde measurements, with an average positive bias lower than 1 × 10 /m. When restricting the analysis to cases having an NF value larger than 5 × 10 /m, FUV provides the peak electron density with a mean difference with C2 of 10%. The peak altitude, also determined from FUV observations, is found to be 15 km above that obtained from C2, and 38 km above the ionosonde value on average.

摘要

美国国家航空航天局电离层连接观测台(ICON)任务搭载的远紫外(FUV)成像仪致力于对中低纬度电离层动力学进行观测和研究。我们将ICON FUV仪器在夜间提供的氧密度剖面与宇宙二号星座(C2)和地面电离层探测仪测量的电子密度剖面进行比较。对共定位的同步观测数据进行了比较,观测期为2019年11月至2020年7月,产生了数千次符合观测。对电离图序列进行手动缩放可确保电离层探测仪剖面的可靠性,而C2数据则使用自动质量控制算法进行精心挑选。在至日前后的FUV数据中,来自磁共轭半球的光电子贡献清晰可见,我们已在分析中将其滤除。我们发现,FUV观测结果与C2和电离层探测仪的测量结果一致,平均正偏差低于1×10⁵/m³。当将分析限制在NF值大于5×10⁵/m³的情况时,FUV提供的峰值电子密度与C2的平均差异为10%。由FUV观测确定的峰值高度比从C2获得的高度高15千米,平均比电离层探测仪的值高38千米。

相似文献

1
First ICON-FUV Nighttime NmF2 and hmF2 Comparison to Ground and Space-Based Measurements.
J Geophys Res Space Phys. 2021 Nov;126(11). doi: 10.1029/2021ja029360. Epub 2021 Oct 21.
2
The Far Ultra-Violet imager on the ICON mission.
Space Sci Rev. 2017 Oct;212:655-696. doi: 10.1007/s11214-017-0386-0. Epub 2017 Aug 1.
4
Performance evaluation of IRI-Plas 2017 model with ionosonde data measurements of ionospheric parameters.
Heliyon. 2023 Nov 7;9(11):e21911. doi: 10.1016/j.heliyon.2023.e21911. eCollection 2023 Nov.
5
Daytime Ionosphere Retrieval Algorithm for the Ionospheric Connection Explorer (ICON).
Space Sci Rev. 2017 Oct;212(1-2):645-654. doi: 10.1007/s11214-017-0385-1. Epub 2017 Jul 26.
6
Daytime O/N Retrieval Algorithm for the Ionospheric Connection Explorer (ICON).
Space Sci Rev. 2018 Feb;214(42). doi: 10.1007/s11214-018-0477-6. Epub 2018 Jan 30.
7
In Flight Performance of the Far Ultraviolet Instrument (FUV) on ICON.
Space Sci Rev. 2023;219(3):23. doi: 10.1007/s11214-023-00969-9. Epub 2023 Mar 28.
9
SAMI3 ICON: MODEL OF THE IONOSPHERE/PLASMASPHERE SYSTEM.
Space Sci Rev. 2017 Oct;212(1-2):731-742. doi: 10.1007/s11214-017-0415-z. Epub 2017 Oct 2.
10
Variations of Lower Thermospheric FUV Emissions Based on GOLD Observations and GLOW Modeling.
J Geophys Res Space Phys. 2020 Jun;125(6):e2020JA027810. doi: 10.1029/2020JA027810. Epub 2020 Jun 5.

引用本文的文献

1
The Ionospheric Connection Explorer - Prime Mission Review.
Space Sci Rev. 2023;219(5):41. doi: 10.1007/s11214-023-00975-x. Epub 2023 Jul 17.
2
In Flight Performance of the Far Ultraviolet Instrument (FUV) on ICON.
Space Sci Rev. 2023;219(3):23. doi: 10.1007/s11214-023-00969-9. Epub 2023 Mar 28.

本文引用的文献

2
The Far Ultra-Violet imager on the ICON mission.
Space Sci Rev. 2017 Oct;212:655-696. doi: 10.1007/s11214-017-0386-0. Epub 2017 Aug 1.
3
Design and Performance of the ICON EUV Spectrograph.
Space Sci Rev. 2017 Oct;212:631-643. doi: 10.1007/s11214-017-0384-2. Epub 2017 Jul 20.
4
Ion Velocity Measurements for the Ionospheric Connections Explorer.
Space Sci Rev. 2017 Oct;212(1-2):615-629. doi: 10.1007/s11214-017-0383-3. Epub 2017 Jul 20.
5
Retrieval of Lower Thermospheric Temperatures from O A Band Emission: The MIGHTI Experiment on ICON.
Space Sci Rev. 2018 Feb;214(1). doi: 10.1007/s11214-017-0434-9. Epub 2017 Nov 30.
6
Daytime Ionosphere Retrieval Algorithm for the Ionospheric Connection Explorer (ICON).
Space Sci Rev. 2017 Oct;212(1-2):645-654. doi: 10.1007/s11214-017-0385-1. Epub 2017 Jul 26.
7
The MIGHTI Wind Retrieval Algorithm: Description and Verification.
Space Sci Rev. 2017 Oct;212(1-2):585-600. doi: 10.1007/s11214-017-0359-3. Epub 2017 Apr 10.
8
Daytime O/N Retrieval Algorithm for the Ionospheric Connection Explorer (ICON).
Space Sci Rev. 2018 Feb;214(42). doi: 10.1007/s11214-018-0477-6. Epub 2018 Jan 30.
9
Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration.
Space Sci Rev. 2017 Oct;212(1-2):553-584. doi: 10.1007/s11214-017-0358-4. Epub 2017 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验