Suppr超能文献

首次将ICON-FUV夜间NmF2和hmF2与地面及天基测量结果进行比较。

First ICON-FUV Nighttime NmF2 and hmF2 Comparison to Ground and Space-Based Measurements.

作者信息

Wautelet G, Hubert B, Gérard J-C, Immel T J, Frey H U, Mende S B, Kamalabadi F, Kamaci U, England S L

机构信息

Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Laboratoire de Physique Atmosphérique et Planétaire (LPAP), Université de Liège, Liège, Belgium.

Space Sciences Laboratory, University of California, Berkeley, Berkeley, CA, USA.

出版信息

J Geophys Res Space Phys. 2021 Nov;126(11). doi: 10.1029/2021ja029360. Epub 2021 Oct 21.

Abstract

The Far Ultra Violet (FUV) ultraviolet imager onboard the NASA-ICON mission is dedicated to the observation and study of the ionosphere dynamics at mid and low latitudes. We compare O density profiles provided by the ICON FUV instrument during nighttime with electron density profiles measured by the COSMIC-2 constellation (C2) and ground-based ionosondes. Co-located simultaneous observations are compared, covering the period from November 2019 to July 2020, which produces several thousands of coincidences. Manual scaling of ionogram sequences ensures the reliability of the ionosonde profiles, while C2 data are carefully selected using an automatic quality control algorithm. Photoelectron contribution coming from the magnetically conjugated hemisphere is clearly visible in FUV data around solstices and has been filtered out from our analysis. We find that the FUV observations are consistent with the C2 and ionosonde measurements, with an average positive bias lower than 1 × 10 /m. When restricting the analysis to cases having an NF value larger than 5 × 10 /m, FUV provides the peak electron density with a mean difference with C2 of 10%. The peak altitude, also determined from FUV observations, is found to be 15 km above that obtained from C2, and 38 km above the ionosonde value on average.

摘要

美国国家航空航天局电离层连接观测台(ICON)任务搭载的远紫外(FUV)成像仪致力于对中低纬度电离层动力学进行观测和研究。我们将ICON FUV仪器在夜间提供的氧密度剖面与宇宙二号星座(C2)和地面电离层探测仪测量的电子密度剖面进行比较。对共定位的同步观测数据进行了比较,观测期为2019年11月至2020年7月,产生了数千次符合观测。对电离图序列进行手动缩放可确保电离层探测仪剖面的可靠性,而C2数据则使用自动质量控制算法进行精心挑选。在至日前后的FUV数据中,来自磁共轭半球的光电子贡献清晰可见,我们已在分析中将其滤除。我们发现,FUV观测结果与C2和电离层探测仪的测量结果一致,平均正偏差低于1×10⁵/m³。当将分析限制在NF值大于5×10⁵/m³的情况时,FUV提供的峰值电子密度与C2的平均差异为10%。由FUV观测确定的峰值高度比从C2获得的高度高15千米,平均比电离层探测仪的值高38千米。

相似文献

2
The Far Ultra-Violet imager on the ICON mission.国际日冕观测台(ICON)任务中的远紫外线成像仪。
Space Sci Rev. 2017 Oct;212:655-696. doi: 10.1007/s11214-017-0386-0. Epub 2017 Aug 1.
9
SAMI3 ICON: MODEL OF THE IONOSPHERE/PLASMASPHERE SYSTEM.SAMI3电离层成像仪:电离层/等离子体层系统模型
Space Sci Rev. 2017 Oct;212(1-2):731-742. doi: 10.1007/s11214-017-0415-z. Epub 2017 Oct 2.

引用本文的文献

本文引用的文献

2
The Far Ultra-Violet imager on the ICON mission.国际日冕观测台(ICON)任务中的远紫外线成像仪。
Space Sci Rev. 2017 Oct;212:655-696. doi: 10.1007/s11214-017-0386-0. Epub 2017 Aug 1.
3
Design and Performance of the ICON EUV Spectrograph.“离子体极紫外光谱仪”的设计与性能
Space Sci Rev. 2017 Oct;212:631-643. doi: 10.1007/s11214-017-0384-2. Epub 2017 Jul 20.
4
Ion Velocity Measurements for the Ionospheric Connections Explorer.电离层连接探测器的离子速度测量
Space Sci Rev. 2017 Oct;212(1-2):615-629. doi: 10.1007/s11214-017-0383-3. Epub 2017 Jul 20.
7
The MIGHTI Wind Retrieval Algorithm: Description and Verification.MIGHTI风场反演算法:描述与验证
Space Sci Rev. 2017 Oct;212(1-2):585-600. doi: 10.1007/s11214-017-0359-3. Epub 2017 Apr 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验