Rayan Bader, Barnea Eilon, Khokhlov Alexander, Upcher Alexander, Landau Meytal
Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer-Sheva, Israel.
Front Mol Biosci. 2023 Jul 4;10:1184785. doi: 10.3389/fmolb.2023.1184785. eCollection 2023.
Phenol-soluble modulins (PSMs) are virulent peptides secreted by staphylococci that undergo self-assembly into amyloid fibrils. This study focuses on PSMα1 and PSMα3, which share homologous sequences but exhibit distinct amyloid fibril structures. Upon subjecting PSMα1 to an 80°C heat shock, it fibrillates into cross-β structures, resulting in the loss of cytotoxic activity. Conversely, PSMα3 cross-α fibrils undergo reversible disaggregation upon heat shock, leading to the recovery of cytotoxicity. The differential thermostability probably arises from the presence of hydrogen bonds along the β-strands within the β-sheets of the cross-β fibrils. We propose that the breakdown of PSMα3 fibrils into soluble species, potentially co-aggregating with membrane lipids, is crucial for its toxic process and enables the reversible modulation of its biological activity under stress conditions. In contrast, the formation of robust and irreversible cross-β fibrils by PSMα1 corresponds to its role in biofilm stability. These findings emphasize how the unique fibril morphologies and thermostability of PSMα1 and PSMα3 shape their functional roles in various environments of .
酚溶性调节素(PSMs)是葡萄球菌分泌的毒性肽,可自组装成淀粉样原纤维。本研究聚焦于PSMα1和PSMα3,它们具有同源序列,但呈现出不同的淀粉样原纤维结构。将PSMα1进行80°C热休克处理后,它会形成交叉β结构的原纤维,导致细胞毒性活性丧失。相反,PSMα3的交叉α原纤维在热休克后会发生可逆解聚,从而恢复细胞毒性。这种不同的热稳定性可能源于交叉β原纤维β折叠内β链上存在氢键。我们提出,PSMα3原纤维分解为可溶性物质,可能与膜脂共同聚集,这对其毒性过程至关重要,并使其在应激条件下能够可逆地调节其生物活性。相比之下,PSMα1形成坚固且不可逆的交叉β原纤维与其在生物膜稳定性中的作用相对应。这些发现强调了PSMα1和PSMα3独特的原纤维形态和热稳定性如何在不同环境中塑造它们的功能作用。