Suppr超能文献

细菌在等离子体光纤照明下的群体效应特性。

Characterization of bacteria swarming effect under plasmonic optical fiber illumination.

机构信息

Imperial College London, Institute of Global Health Innovation, The Hamlyn Centre, London, United Kingdom.

Imperial College London, Department of Electrical and Electronic Engineering, Faculty of Engineering, London, United Kingdom.

出版信息

J Biomed Opt. 2023 Jul;28(7):075003. doi: 10.1117/1.JBO.28.7.075003. Epub 2023 Jul 18.

Abstract

SIGNIFICANCE

Plasmo-thermo-electrophoresis (PTEP) involves using plasmonic microstructures to generate both a large-scale convection current and a near-field attraction force (thermo-electrophoresis). These effects facilitate the collective locomotion (i.e., swarming) of microscale particles in suspension, which can be utilized for numerous applications, such as particle/cell manipulation and targeted drug delivery. However, to date, PTEP for ensemble manipulation has not been well characterized, meaning its potential is yet to be realized.

AIM

Our study aims to provide a characterization of PTEP on the motion and swarming effect of various particles and bacterial cells to allow rational design for bacteria-based microrobots and drug delivery applications.

APPROACH

Plasmonic optical fibers (POFs) were fabricated using two-photon polymerization. The particle motion and swarming behavior near the tips of optical fibers were characterized by image-based particle tracking and analyzing the spatiotemporal concentration variation. These results were further correlated with the shape and surface charge of the particles defined by the zeta potential.

RESULTS

The PTEP demonstrated a drag force ranging from a few hundred fN to a few tens of pN using the POFs. Furthermore, bacteria with the greater (negative) zeta potential () and smoother shape (e.g., and ) exhibited the greatest swarming behavior.

CONCLUSIONS

The characterization of PTEP-based bacteria swarming behavior investigated in our study can help predict the expected swarming behavior of given particles/bacterial cells. As such, this may aid in realizing the potential of PTEP in the wide-ranging applications highlighted above.

摘要

意义

等离子体-热电泳(PTEP)涉及使用等离子体微结构产生大规模对流电流和近场吸引力(热电泳)。这些效应促进了悬浮微颗粒的集体运动(即群体运动),可用于多种应用,如颗粒/细胞操纵和靶向药物输送。然而,迄今为止,尚未对 PTEP 进行有效的群体操纵特性研究,这意味着其潜力尚未得到充分利用。

目的

我们的研究旨在对各种颗粒和细菌细胞的 PTEP 运动和群体运动效应进行特征描述,以便为基于细菌的微型机器人和药物输送应用进行合理设计。

方法

使用双光子聚合技术制造了等离子体光纤(POF)。通过基于图像的颗粒跟踪和分析光纤尖端的时空浓度变化来表征颗粒的运动和群体行为。将这些结果与通过 Zeta 电位定义的颗粒的形状和表面电荷进一步相关联。

结果

使用 POF 展示了从几百飞牛顿到几十皮牛顿的 PTEP 拖曳力。此外,具有更大(负)Zeta 电位()和更光滑形状(例如和)的细菌表现出最强的群体行为。

结论

我们研究中对基于 PTEP 的细菌群体行为的特征描述可以帮助预测给定颗粒/细菌细胞的预期群体行为。因此,这可能有助于实现 PTEP 在上述广泛应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59bc/10353699/3c4af7cfe0b2/JBO-028-075003-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验