Suppr超能文献

合成气转化为高品质汽油过程中,水在亲水/疏水催化剂上扩散行为的见解

Insights into the Diffusion Behaviors of Water over Hydrophilic/Hydrophobic Catalysts During the Conversion of Syngas to High-Quality Gasoline.

作者信息

Xu Yanfei, Liang Heng, Li Rui, Zhang Zhenxuan, Qin Chuan, Xu Di, Fan Haifeng, Hou Bo, Wang Jungang, Gu Xiang-Kui, Ding Mingyue

机构信息

School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, 430072, Wuhan, China.

State Key Laboratory for High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China.

出版信息

Angew Chem Int Ed Engl. 2023 Sep 11;62(37):e202306786. doi: 10.1002/anie.202306786. Epub 2023 Aug 3.

Abstract

Although considerable efforts towards directly converting syngas to liquid fuels through Fischer-Tropsch synthesis have been made, developing catalysts with low CO selectivity for the synthesis of high-quality gasoline remains a big challenge. Herein, we designed a bifunctional catalyst composed of hydrophobic FeNa@Si-c and HZSM-5 zeolite, which exhibited a low CO selectivity of 14.3 % at 49.8 % CO conversion, with a high selectivity of 62.5 % for gasoline in total products. Molecular dynamic simulations and model experiments revealed that the diffusion of water molecules through hydrophilic catalyst was bidirectional, while the diffusion through hydrophobic catalyst was unidirectional, which were crucial to tune the water-gas shift reaction and control CO formation. This work provides a new fundamental understanding about the function of hydrophobic modification of catalysts in syngas conversion.

摘要

尽管人们已经为通过费托合成将合成气直接转化为液体燃料付出了巨大努力,但开发用于合成高质量汽油的具有低一氧化碳选择性的催化剂仍然是一个巨大挑战。在此,我们设计了一种由疏水的FeNa@Si-c和HZSM-5沸石组成的双功能催化剂,该催化剂在一氧化碳转化率为49.8%时表现出14.3%的低一氧化碳选择性,在总产物中对汽油的选择性高达62.5%。分子动力学模拟和模型实验表明,水分子通过亲水性催化剂的扩散是双向的,而通过疏水性催化剂的扩散是单向的,这对于调节水煤气变换反应和控制一氧化碳的生成至关重要。这项工作为合成气转化中催化剂疏水改性的功能提供了新的基本认识。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验