Chen Ling, Tian Jiajun, Wu Qiang, Li Jiewen, Yao Yong, Wang Jiawei
Opt Express. 2023 Jul 17;31(15):24988-25003. doi: 10.1364/OE.496380.
It is an enormous challenge for optical fiber sensors to intuitively achieve the simultaneous measurement of both gas pressure and temperature with high sensitivity. To address this challenge, the Fabry-Perot interferometer (FPI) based on high-order harmonic Vernier effect is combined with the fiber Bragg grating (FBG). A novel fiber sensor built with a cascaded FPI and an FBG for the simultaneous measurement of gas pressure and temperature is designed and experimentally investigated by virtue of the temperature sensing property of FBG and its independence on gas pressure-induced refractive index change, where a high-order harmonic Vernier effect was utilized to boost the gas pressure sensitivity of the sensor. As gas pressure increases from 0 to 1 MPa, the internal envelope of composite FBG and FPI based 10-order harmonic Vernier effect exhibits redshift with maximal sensitivities of 146.64 nm/MPa and a high magnification factor of 43. FBG is insensitive to gas pressure change, whereas, the spectral response of the internal envelope 10-order harmonic Vernier effect and FBG monotonously move and undergo blueshift and redshift as the temperature increases from 30 °C to 120 °C with maximal sensitivities of -0.48 and 0.011 nm/°C, respectively. Therefore, the distinct sensitivities of FBG and FPI to gas pressure and temperature result in extraction of both gas pressure and temperature information simultaneously by constructing measurement matrixes.
对于光纤传感器而言,要直观地实现对气体压力和温度的高灵敏度同时测量是一项巨大挑战。为应对这一挑战,将基于高阶谐波 Vernier 效应的法布里 - 珀罗干涉仪(FPI)与光纤布拉格光栅(FBG)相结合。利用 FBG 的温度传感特性及其对气体压力引起的折射率变化的独立性,设计并实验研究了一种由级联 FPI 和 FBG 构建的用于同时测量气体压力和温度的新型光纤传感器,其中利用高阶谐波 Vernier 效应提高了传感器的气体压力灵敏度。当气体压力从 0 增加到 1 MPa 时,基于复合 FBG 和 FPI 的 10 阶谐波 Vernier 效应的内包络呈现红移,最大灵敏度为 146.64 nm/MPa,放大倍数高达 43。FBG 对气体压力变化不敏感,而当温度从 30 °C 升高到 120 °C 时,内包络 10 阶谐波 Vernier 效应和 FBG 的光谱响应分别单调移动并经历蓝移和红移,最大灵敏度分别为 -0.48 和 0.011 nm/°C。因此,FBG 和 FPI 对气体压力和温度的不同灵敏度使得通过构建测量矩阵能够同时提取气体压力和温度信息。