Suppr超能文献

通过深度学习策略提高散射组织中的平面荧光显微镜成像质量。

Improving flat fluorescence microscopy in scattering tissue through deep learning strategies.

出版信息

Opt Express. 2023 Jul 3;31(14):23008-23026. doi: 10.1364/OE.489677.

Abstract

Intravital microscopy in small animals growingly contributes to the visualization of short- and long-term mammalian biological processes. Miniaturized fluorescence microscopy has revolutionized the observation of live animals' neural circuits. The technology's ability to further miniaturize to improve freely moving experimental settings is limited by its standard lens-based layout. Typical miniature microscope designs contain a stack of heavy and bulky optical components adjusted at relatively long distances. Computational lensless microscopy can overcome this limitation by replacing the lenses with a simple thin mask. Among other critical applications, Flat Fluorescence Microscope (FFM) holds promise to allow for real-time brain circuits imaging in freely moving animals, but recent research reports show that the quality needs to be improved, compared with imaging in clear tissue, for instance. Although promising results were reported with mask-based fluorescence microscopes in clear tissues, the impact of light scattering in biological tissue remains a major challenge. The outstanding performance of deep learning (DL) networks in computational flat cameras and imaging through scattering media studies motivates the development of deep learning models for FFMs. Our holistic ray-tracing and Monte Carlo FFM computational model assisted us in evaluating deep scattering medium imaging with DL techniques. We demonstrate that physics-based DL models combined with the classical reconstruction technique of the alternating direction method of multipliers (ADMM) perform a fast and robust image reconstruction, particularly in the scattering medium. The structural similarity indexes of the reconstructed images in scattering media recordings were increased by up to 20% compared with the prevalent iterative models. We also introduce and discuss the challenges of DL approaches for FFMs under physics-informed supervised and unsupervised learning.

摘要

小动物体内显微镜技术越来越有助于对短期和长期哺乳动物生物学过程的可视化。微型荧光显微镜技术彻底改变了对活体动物神经回路的观察。该技术进一步微型化以改善自由移动实验环境的能力受到其基于标准镜头布局的限制。典型的微型显微镜设计包含一组调整在相对远距离的沉重且庞大的光学组件。无透镜计算显微镜可以通过用简单的薄掩模代替透镜来克服此限制。除了其他关键应用外,平面荧光显微镜 (FFM) 有望实现自由移动动物的实时大脑回路成像,但最近的研究报告表明,与在清澈组织中的成像相比,其质量需要改进,例如。尽管基于掩模的荧光显微镜在清澈组织中报告了有希望的结果,但生物组织中的光散射仍然是一个主要挑战。深度学习 (DL) 网络在计算平面相机和散射介质成像研究中的出色表现促使我们为 FFM 开发深度学习模型。我们的整体光线追踪和蒙特卡罗 FFM 计算模型帮助我们评估了使用 DL 技术的深散射介质成像。我们证明,基于物理的 DL 模型与交替方向乘子法 (ADMM) 的经典重建技术相结合,可以进行快速而稳健的图像重建,特别是在散射介质中。与流行的迭代模型相比,散射介质记录中的重建图像的结构相似性指数提高了 20%。我们还介绍并讨论了 FFM 下基于物理信息的监督和无监督学习的 DL 方法的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验