Suppr超能文献

一种结构化的 FMEA 方法,用于优化适形调强放疗(IMRT)和容积旋转调强放疗(VMAT)质量保证技术的特定计划组合。

A structured FMEA approach to optimizing combinations of plan-specific quality assurance techniques for IMRT and VMAT QA.

机构信息

Department of Radiation Oncology, Duke University, Durham, North Carolina, USA.

出版信息

Med Phys. 2023 Sep;50(9):5387-5397. doi: 10.1002/mp.16630. Epub 2023 Jul 20.

Abstract

BACKGROUND

Many commercial tools are available for plan-specific quality assurance (QA) of radiotherapy plans, with their functionality assessed in isolation. However, multiple QA tools are required to review the full range of potential errors. It is important to assess their effectiveness in combination with each other to look for ways to both streamline the QA process and to make certain that errors of high impact and/or high occurrence are caught before reaching patient treatment.

PURPOSE

To develop a structured method to assess the effective risk reduction of combinations of QA methods for IMRT/VMAT treatments.

METHODS

First, a structured prospective risk assessment was performed to establish the major failure modes (FMs) of IMRT/VMAT QA, and assign occurrence (O), severity (S), and baseline detectability (BD) rankings to them. The baseline assumed that chart checks and linear accelerator QA was performed, but no plan-specific secondary dose calculation or measurement was done. Second, the detectability of each FM for two secondary dose calculation methods and four plan measurement methods (point-based dose calculation, Monte-Carlo-based dose calculation, 2D fluence-based measurement, 2.5D phantom-based measurement, log file analysis with dose recalculation, and log file analysis combined with MLC QA) was determined. Third, we used a minimum detectability approach in addition to each FM's occurrence and severity to determine the optimal combination of QA methods. We analyzed the cumulative risk priority number of eight combinations of QA methods. The analysis was done on (1) all FMs, (2) FMs with high severity, (3) FMs with high-risk priority numbers (RPN) of OSBD, and (4) on FMs with both high severity and high RPN.

RESULTS

Our analysis resulted in 54 FMs, including commissioning, planning, data transfer, and linear accelerator failures. 1D secondary dose calculation plus measurement provided a 19%-22% risk reduction from baseline. 1D/3D secondary dose calculation plus log files created a 25%-32% reduction. 3D secondary dose calculation plus measurement resulted in a 27%-34% reduction. 3D secondary dose calculation plus log files with additional machine QA provided the greatest reduction of 31%-42%.

CONCLUSION

This novel structured approach to comparing combinations of QA methods will allow us to optimize our procedures, with the goal of detecting all clinically significant FMs. Our results show that log-file QA with 3D dose recalculation and supplemental machine QA provides better risk reduction than measurement-based QA. This work builds evidence to justify reducing or eliminating measurement-based PSQA with an independent 3D dose verification, log-file measurement, and appropriate supplementation of machine QA. The process also highlights FMs that cannot be caught by pre-treatment QA, prompting us to consider future directions for on-treatment QA.

摘要

背景

许多商业化的工具可用于特定计划的放射治疗计划质量保证(QA),其功能是孤立评估的。然而,需要多种 QA 工具来审查潜在错误的全部范围。评估它们彼此结合的有效性以寻找简化 QA 流程的方法并确保在进行患者治疗之前发现高影响和/或高发生率的错误非常重要。

目的

开发一种结构化方法来评估 IMRT/VMAT 治疗中 QA 方法组合的有效风险降低。

方法

首先,进行了结构化的前瞻性风险评估,以确定 IMRT/VMAT QA 的主要失效模式(FM),并对其进行发生(O)、严重程度(S)和基线可检测性(BD)排名。基线假设执行图表检查和线性加速器 QA,但不进行特定于计划的二次剂量计算或测量。其次,确定了两种二次剂量计算方法和四种计划测量方法(基于点的剂量计算、基于蒙特卡罗的剂量计算、2D 通量测量、2.5D 体模测量、带有剂量重新计算的日志文件分析以及结合 MLC QA 的日志文件分析)对每个 FM 的可检测性。第三,除了每个 FM 的发生和严重程度之外,我们还使用最小可检测性方法来确定 QA 方法的最佳组合。我们分析了八种 QA 方法组合的累积风险优先号码。该分析是针对(1)所有 FM,(2)具有高严重程度的 FM,(3)具有高风险优先号码(OSBD)的 FM,以及(4)具有高严重程度和高 RPN 的 FM 进行的。

结果

我们的分析产生了 54 个 FM,包括调试、规划、数据传输和直线加速器故障。1D 二次剂量计算加测量使基线降低了 19%-22%。1D/3D 二次剂量计算加日志文件创建了 25%-32%的减少。3D 二次剂量计算加测量导致减少 27%-34%。3D 二次剂量计算加带有附加机器 QA 的日志文件提供了最大的 31%-42%的减少。

结论

这种比较 QA 方法组合的新颖结构化方法将使我们能够优化我们的程序,目标是检测所有具有临床意义的 FM。我们的结果表明,具有 3D 剂量重新计算和补充机器 QA 的日志文件 QA 提供了比基于测量的 QA 更好的风险降低。这项工作为减少或消除基于测量的 PSQA 提供了证据,理由是使用独立的 3D 剂量验证、日志文件测量和适当补充机器 QA。该过程还突出了无法通过治疗前 QA 捕获的 FM,促使我们考虑治疗期间 QA 的未来方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验