Suppr超能文献

相似文献

1
Machine learning and the quest for objectivity in climate model parameterization.
Clim Change. 2023;176(8):101. doi: 10.1007/s10584-023-03532-1. Epub 2023 Jul 18.
3
Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations.
Natl Sci Rev. 2022 Mar 8;9(8):nwac044. doi: 10.1093/nsr/nwac044. eCollection 2022 Aug.
4
Deep learning to represent subgrid processes in climate models.
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):9684-9689. doi: 10.1073/pnas.1810286115. Epub 2018 Sep 6.
5
Expert judgment in climate science: How it is used and how it can be justified.
Stud Hist Philos Sci. 2023 Aug;100:32-38. doi: 10.1016/j.shpsa.2023.05.005. Epub 2023 Jun 12.
8
Deep Learning Based Cloud Cover Parameterization for ICON.
J Adv Model Earth Syst. 2022 Dec;14(12):e2021MS002959. doi: 10.1029/2021MS002959. Epub 2022 Dec 14.
9
A framework for parameter estimation and model selection in kernel deep stacking networks.
Artif Intell Med. 2016 Jun;70:31-40. doi: 10.1016/j.artmed.2016.04.002. Epub 2016 May 30.

引用本文的文献

1
An adaptive data-driven architecture for mental health care applications.
PeerJ. 2024 Mar 29;12:e17133. doi: 10.7717/peerj.17133. eCollection 2024.

本文引用的文献

1
The Importance of Understanding Deep Learning.
Erkenntnis. 2024;89(5):1823-1840. doi: 10.1007/s10670-022-00605-y. Epub 2022 Aug 7.
2
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
3
Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems.
Phys Rev Lett. 2021 Mar 5;126(9):098302. doi: 10.1103/PhysRevLett.126.098302.
4
Physics-informed machine learning: case studies for weather and climate modelling.
Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200093. doi: 10.1098/rsta.2020.0093. Epub 2021 Feb 15.
5
Understanding climate phenomena with data-driven models.
Stud Hist Philos Sci. 2020 Dec;84:46-56. doi: 10.1016/j.shpsa.2020.08.003. Epub 2020 Aug 23.
6
Confronting the Challenge of Modeling Cloud and Precipitation Microphysics.
J Adv Model Earth Syst. 2020 Aug;12(8):e2019MS001689. doi: 10.1029/2019MS001689. Epub 2020 Jul 31.
7
Deep learning and process understanding for data-driven Earth system science.
Nature. 2019 Feb;566(7743):195-204. doi: 10.1038/s41586-019-0912-1. Epub 2019 Feb 13.
8
Practice and philosophy of climate model tuning across six U.S. modeling centers.
Geosci Model Dev. 2017;10(9):3207-3223. doi: 10.5194/gmd-10-3207-2017. Epub 2017 Sep 1.
9
Deep learning to represent subgrid processes in climate models.
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):9684-9689. doi: 10.1073/pnas.1810286115. Epub 2018 Sep 6.
10
Model robustness as a confirmatory virtue: The case of climate science.
Stud Hist Philos Sci. 2015 Feb;49:58-68. doi: 10.1016/j.shpsa.2014.12.002. Epub 2015 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验