Suppr超能文献

内核深度堆叠网络中参数估计与模型选择的框架

A framework for parameter estimation and model selection in kernel deep stacking networks.

作者信息

Welchowski Thomas, Schmid Matthias

机构信息

Department of Medical Biometry, Informatics and Epidemiology, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.

出版信息

Artif Intell Med. 2016 Jun;70:31-40. doi: 10.1016/j.artmed.2016.04.002. Epub 2016 May 30.

Abstract

BACKGROUND AND OBJECTIVES

Kernel deep stacking networks (KDSNs) are a novel method for supervised learning in biomedical research. Belonging to the class of deep learning techniques, KDSNs are based on artificial neural network architectures that involve multiple nonlinear transformations of the input data. Unlike traditional artificial neural networks, KDSNs do not rely on backpropagation algorithms but on an efficient fitting procedure that is based on a series of kernel ridge regression models with closed-form solutions. Although being computationally advantageous, KDSN modeling remains a challenging task, as it requires the specification of a large number of tuning parameters.

METHODS AND MATERIAL

We propose a new data-driven framework for parameter estimation, hyperparameter tuning, and model selection in KDSNs. The proposed methodology is based on a combination of model-based optimization and hill climbing approaches that do not require the pre-specification of any of the KDSN tuning parameters. We demonstrate the performance of KDSNs by analyzing three medical data sets on hospital readmission of diabetes patients, coronary artery disease, and hospital costs.

RESULTS

Our numerical studies show that the run-time of the proposed KDSN methodology is significantly shorter than the respective run-time of grid search strategies for hyperparameter tuning. They also show that KDSN modeling is competitive in terms of prediction accuracy with other state-of-the-art techniques for statistical learning.

CONCLUSIONS

KDSNs are a computationally efficient approximation of backpropagation-based artificial neural network techniques. Application of the proposed methodology results in a fast tuning procedure that generates KDSN fits having a similar prediction accuracy as other techniques in the field of deep learning.

摘要

背景与目的

核深度堆叠网络(KDSNs)是生物医学研究中一种新型的监督学习方法。作为深度学习技术的一种,KDSNs基于人工神经网络架构,该架构涉及对输入数据进行多次非线性变换。与传统人工神经网络不同,KDSNs不依赖反向传播算法,而是基于一系列具有闭式解的核岭回归模型的高效拟合过程。尽管在计算上具有优势,但KDSN建模仍然是一项具有挑战性的任务,因为它需要指定大量的调优参数。

方法与材料

我们提出了一种新的数据驱动框架,用于KDSNs中的参数估计、超参数调优和模型选择。所提出的方法基于基于模型的优化和爬山方法的组合,不需要预先指定任何KDSN调优参数。我们通过分析三个关于糖尿病患者再次入院、冠状动脉疾病和医院费用的医学数据集来展示KDSNs的性能。

结果

我们的数值研究表明,所提出的KDSN方法的运行时间明显短于超参数调优的网格搜索策略的相应运行时间。研究还表明,KDSN建模在预测准确性方面与其他用于统计学习的先进技术具有竞争力。

结论

KDSNs是基于反向传播的人工神经网络技术在计算上的有效近似。所提出方法的应用导致了一个快速调优过程,该过程生成的KDSN拟合在预测准确性方面与深度学习领域的其他技术相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验