Wu Tianyu, Chen Guangrui, Han Ji, Sun Ruigang, Zhao Bin, Zhong Guiyuan, Yamauchi Yusuke, Guan Buyuan
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
J Am Chem Soc. 2023 Aug 2;145(30):16498-16507. doi: 10.1021/jacs.3c03029. Epub 2023 Jul 21.
As a unique class of modular nanomaterials, metal-organic framework (MOF) nanoparticles have attracted widespread interest for use in various fields because of their diverse chemical functionalities, intrinsic microporosity, and three-dimensional (3D) nanoarchitectures. However, endowing MOF nanomaterials with precisely controlled structural symmetries and hierarchical macro/mesoporosities remains a formidable challenge for the researchers. Herein, we report a facile noncentrosymmetric pore-induced anisotropic assembly strategy to prepare a series of 3D dendritic MOF (UiO-66) nanomaterials with highly controllable structural symmetries and hierarchical macro/meso/microporosities. The synthetic route of these nanomaterials depends on the anisotropic nucleation of MOF spherical nanocones with noncentrosymmetric center-radial channels and their oriented growth to isotropic nanospheres through a continuous increase in radius and solid angle. This strategy enables the controllable fabrication of asymmetric MOF nanostructures with abundant geometries and porous structures by regulating the concentration of amphiphilic triblock copolymer templates. Furthermore, the average pore diameter of the resultant MOF nanospheres can be systematically manipulated in a wide range from 35 to 130 nm by finely tuning the reaction temperature. Meanwhile, the strategy can also be extended to synthesize other MOF nanoparticles with similar architectures. Compared with microporous UiO-66 nanocrystals, the MOF nanoparticles with controllable structural symmetries and macro/meso/microporosities show enhanced catalytic activity in the CO cycloaddition reaction. The methodology provides new insights into the rational construction of sophisticated asymmetric open nanostructures of hierarchically porous MOFs for many potential applications.
作为一类独特的模块化纳米材料,金属有机框架(MOF)纳米粒子因其多样的化学功能、固有的微孔性和三维(3D)纳米结构而在各个领域的应用中引起了广泛关注。然而,赋予MOF纳米材料精确可控的结构对称性和分级的大/中/微孔性对研究人员来说仍然是一项艰巨的挑战。在此,我们报告了一种简便的非中心对称孔诱导各向异性组装策略,以制备一系列具有高度可控结构对称性和分级大/中/微孔性的3D树枝状MOF(UiO-66)纳米材料。这些纳米材料的合成路线取决于具有非中心对称中心-径向通道的MOF球形纳米锥的各向异性成核以及它们通过半径和立体角的持续增加向各向同性纳米球的定向生长。通过调节两亲性三嵌段共聚物模板的浓度,该策略能够可控地制造具有丰富几何形状和多孔结构的不对称MOF纳米结构。此外,通过精细调节反应温度,所得MOF纳米球的平均孔径可以在35至130nm的宽范围内进行系统调控。同时,该策略还可以扩展到合成其他具有类似结构的MOF纳米粒子。与微孔UiO-66纳米晶体相比,具有可控结构对称性和大/中/微孔性的MOF纳米粒子在CO环加成反应中表现出增强的催化活性。该方法为合理构建用于许多潜在应用的分级多孔MOF的复杂不对称开放纳米结构提供了新的见解。