Huang Wei, Yuan Haitao, Yang Huangsheng, Shen Yujian, Guo Lihong, Zhong Ningyi, Wu Tong, Shen Yong, Chen Guosheng, Huang Siming, Niu Li, Ouyang Gangfeng
School of Chemical Engineering and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519082, P. R. China.
Center for Drug Research and Development Guangdong Provincial Key Laboratory of Advanced Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
Adv Sci (Weinh). 2025 Feb;12(6):e2410703. doi: 10.1002/advs.202410703. Epub 2024 Dec 16.
Leveraging functional materials to develop advanced personal protective equipment is of significant importance for cutting off the propagation of infectious diseases, yet faces ongoing challenges owing to the unsatisfied antimicrobial efficiency. Herein a hierarchically porous cerium metal-organic framework (Ce-MOF) boosting the antimicrobial performance by intensifying catalytic reactive oxygen species (ROS) generation and bacterial entrapment simultaneously is reported. This Ce-MOF presents dendritic surface topography and hierarchical pore channels where the Lewis acid Ce sites are dispersedly anchored. Attributing to this sophisticated nanoarchitecture rendering the catalytic Ce sites highly accessible, it shows a ca. 1800-fold activity enhancement for the catalytic conversion of atmospheric oxygen to highly toxic ROS compared to traditional CeO. Additionally, the dendritic and negative-charged surface engineered in this Ce-MOF substantially enhances the binding affinity toward positive-charged bacteria, enabling the spatial proximity between the bacteria and the short-lived ROS and therefore maximizing the utilization of highly toxic ROS to inactivate bacteria. It is demonstrated that this Ce-MOF-integrated face mask displays almost 100% antimicrobial efficacy even in insufficient light and dark scenarios. This work provides important insights into the design of antibacterial MOF materials by a pore- and surface-engineering strategy and sheds new light on the development of advanced self-antimicrobial devices.
利用功能材料开发先进的个人防护装备对于切断传染病传播至关重要,但由于抗菌效率不尽人意,仍面临诸多挑战。在此,我们报道了一种具有分级多孔结构的铈基金属有机框架材料(Ce-MOF),它通过同时增强催化活性氧(ROS)的生成和细菌截留来提高抗菌性能。这种Ce-MOF呈现出树枝状的表面形貌和分级孔道,路易斯酸铈位点分散地锚定在其中。由于这种复杂的纳米结构使催化铈位点易于接近,与传统的CeO相比,它在将大气中的氧气催化转化为高毒性ROS方面表现出约1800倍的活性增强。此外,这种Ce-MOF中设计的树枝状和带负电荷的表面大大增强了对带正电荷细菌的结合亲和力,使细菌与短寿命ROS在空间上接近,从而最大限度地利用高毒性ROS来灭活细菌。结果表明,即使在光线不足和黑暗的情况下,这种集成了Ce-MOF的口罩也能显示出几乎100%的抗菌效果。这项工作为通过孔和表面工程策略设计抗菌MOF材料提供了重要见解,并为先进的自抗菌装置的开发提供了新的思路。