IEEE Rev Biomed Eng. 2024;17:63-79. doi: 10.1109/RBME.2023.3297604. Epub 2024 Jan 12.
Computational histopathology is focused on the automatic analysis of rich phenotypic information contained in gigabyte whole slide images, aiming at providing cancer patients with more accurate diagnosis, prognosis, and treatment recommendations. Nowadays deep learning is the mainstream methodological choice in computational histopathology. Transformer, as the latest technological advance in deep learning, learns feature representations and global dependencies based on self-attention mechanisms, which is increasingly gaining prevalence in this field. This article presents a comprehensive review of state-of-the-art vision transformers that have been explored in histopathological image analysis for classification, segmentation, and survival risk regression applications. We first overview preliminary concepts and components built into vision transformers. Various recent applications including whole slide image classification, histological tissue component segmentation, and survival outcome prediction with tailored transformer architectures are then discussed. We finally discuss key challenges revolving around the use of vision transformers and envisioned future perspectives. We hope that this review could provide an elaborate guideline for readers to explore vision transformers in computational histopathology, such that more advanced techniques assisting in the precise diagnosis and treatment of cancer patients could be developed.
计算病理组织学专注于自动分析千兆字节全玻片图像中包含的丰富表型信息,旨在为癌症患者提供更准确的诊断、预后和治疗建议。如今,深度学习是计算病理组织学中的主流方法选择。Transformer 作为深度学习的最新技术进步,基于自注意力机制学习特征表示和全局依赖关系,在该领域越来越流行。本文对在病理图像分析中用于分类、分割和生存风险回归应用的最先进的视觉转换器进行了全面回顾。我们首先概述了视觉转换器中内置的初步概念和组件。然后讨论了各种最新应用,包括全玻片图像分类、组织学组织成分分割以及使用定制的转换器架构进行生存结果预测。最后,我们讨论了围绕使用视觉转换器的关键挑战和未来展望。我们希望本综述能够为读者在计算病理组织学中探索视觉转换器提供一个详尽的指导,以便开发出更先进的技术来帮助癌症患者进行精确诊断和治疗。