文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习在临床癌症检测中的应用:实施挑战与解决方案综述

Deep Learning Applications in Clinical Cancer Detection: A Review of Implementation Challenges and Solutions.

作者信息

Yao Isaiah Z, Dong Min, Hwang William Y K

机构信息

Hwa Chong Institution, Junior College Section, Singapore.

National Cancer Centre Singapore.

出版信息

Mayo Clin Proc Digit Health. 2025 Jul 18;3(3):100253. doi: 10.1016/j.mcpdig.2025.100253. eCollection 2025 Sep.


DOI:10.1016/j.mcpdig.2025.100253
PMID:40822144
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12351333/
Abstract

Deep learning (DL) has revolutionized cancer detection accuracy, speed, and accessibility. Leveraging sophisticated algorithms, DL has demonstrated transformative potential across diverse applications, including imaging-based diagnostics and genomic analysis, ultimately leading to better detection, improved patient treatment outcomes, and decreased overall mortality rates. Despite its promise, integrating DL into clinical practice presents substantial challenges, including limitations in data quality and standardization, as well as ethical and regulatory concerns, and the need for model interpretability and transparency. This review provides a comprehensive analysis of recent research (2018-2024) retrieved from PubMed and IEEE Xplore databases, encompassing 1304 studies from PubMed and 115 from IEEE, to highlight the current applications, opportunities, and challenges of DL in oncology. Additionally, this paper explores emerging solutions, including federated learning, explainable artificial intelligence, and synthetic data generation, to address these barriers. The review also emphasizes the importance of interdisciplinary collaboration, the integration of next-generation artificial intelligence techniques, and the adoption of multimodal data approaches to improve diagnostic precision and support personalized cancer treatment. By systematically analyzing key developments and challenges, this review aims to guide future research and DL technologies in oncology, promoting equitable and impactful advancements in cancer care.

摘要

深度学习(DL)彻底改变了癌症检测的准确性、速度和可及性。借助复杂的算法,DL已在包括基于成像的诊断和基因组分析在内的各种应用中展现出变革潜力,最终实现更好的检测效果、改善患者治疗结果并降低总体死亡率。尽管前景广阔,但将DL整合到临床实践中面临诸多重大挑战,包括数据质量和标准化方面的限制,以及伦理和监管问题,还有对模型可解释性和透明度的需求。本综述对从PubMed和IEEE Xplore数据库检索到的近期研究(2018 - 2024年)进行了全面分析,涵盖来自PubMed的1304项研究和来自IEEE的115项研究,以突出DL在肿瘤学中的当前应用、机遇和挑战。此外,本文探讨了新兴解决方案,包括联邦学习、可解释人工智能和合成数据生成,以应对这些障碍。该综述还强调了跨学科合作、整合下一代人工智能技术以及采用多模态数据方法以提高诊断精度和支持个性化癌症治疗的重要性。通过系统分析关键进展和挑战,本综述旨在指导肿瘤学领域未来的研究和DL技术,推动癌症护理领域实现公平且有影响力的进步。

相似文献

[1]
Deep Learning Applications in Clinical Cancer Detection: A Review of Implementation Challenges and Solutions.

Mayo Clin Proc Digit Health. 2025-7-18

[2]
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.

J Med Internet Res. 2025-6-23

[3]
Emerging research trends in artificial intelligence for cancer diagnostic systems: A comprehensive review.

Heliyon. 2024-8-23

[4]
Integrating artificial intelligence in healthcare: applications, challenges, and future directions.

Future Sci OA. 2025-12

[5]
Application of artificial intelligence in the diagnosis of malignant digestive tract tumors: focusing on opportunities and challenges in endoscopy and pathology.

J Transl Med. 2025-4-9

[6]
The Role of AI in Nursing Education and Practice: Umbrella Review.

J Med Internet Res. 2025-4-4

[7]
AML diagnostics in the 21st century: Use of AI.

Semin Hematol. 2025-6-16

[8]
Enhancing ultrasonographic detection of hepatocellular carcinoma with artificial intelligence: current applications, challenges and future directions.

BMJ Open Gastroenterol. 2025-7-1

[9]
The Use of AI for Phenotype-Genotype Mapping.

Methods Mol Biol. 2025

[10]
The Role of Artificial Intelligence in Heart Failure Diagnostics, Risk Prediction, and Therapeutic Strategies: A Comprehensive Review.

Cureus. 2025-7-1

本文引用的文献

[1]
Prediction of Early Diagnosis in Ovarian Cancer Patients Using Machine Learning Approaches with Boruta and Advanced Feature Selection.

Life (Basel). 2025-4-3

[2]
Calibrating AI Reliance-A Physician's Superhuman Dilemma.

JAMA Health Forum. 2025-3-7

[3]
Improved early detection accuracy for breast cancer using a deep learning framework in medical imaging.

Comput Biol Med. 2025-3

[4]
Synthetic Boosted Resampling Using Deep Generative Adversarial Networks: A Novel Approach to Improve Cancer Prediction from Imbalanced Datasets.

Cancers (Basel). 2024-12-2

[5]
Augmenting a spine CT scans dataset using VAEs, GANs, and transfer learning for improved detection of vertebral compression fractures.

Comput Biol Med. 2025-1

[6]
Explainable artificial intelligence in breast cancer detection and risk prediction: A systematic scoping review.

Cancer Innov. 2024-7-3

[7]
Deep learning applications in breast cancer histopathological imaging: diagnosis, treatment, and prognosis.

Breast Cancer Res. 2024-9-20

[8]
Multimodal data integration for oncology in the era of deep neural networks: a review.

Front Artif Intell. 2024-7-25

[9]
TOTEM: a multi-cancer detection and localization approach using circulating tumor DNA methylation markers.

BMC Cancer. 2024-7-15

[10]
Improving prediction of blood cancer using leukemia microarray gene data and Chi2 features with weighted convolutional neural network.

Sci Rep. 2024-7-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索