Yao Isaiah Z, Dong Min, Hwang William Y K
Hwa Chong Institution, Junior College Section, Singapore.
National Cancer Centre Singapore.
Mayo Clin Proc Digit Health. 2025 Jul 18;3(3):100253. doi: 10.1016/j.mcpdig.2025.100253. eCollection 2025 Sep.
Deep learning (DL) has revolutionized cancer detection accuracy, speed, and accessibility. Leveraging sophisticated algorithms, DL has demonstrated transformative potential across diverse applications, including imaging-based diagnostics and genomic analysis, ultimately leading to better detection, improved patient treatment outcomes, and decreased overall mortality rates. Despite its promise, integrating DL into clinical practice presents substantial challenges, including limitations in data quality and standardization, as well as ethical and regulatory concerns, and the need for model interpretability and transparency. This review provides a comprehensive analysis of recent research (2018-2024) retrieved from PubMed and IEEE Xplore databases, encompassing 1304 studies from PubMed and 115 from IEEE, to highlight the current applications, opportunities, and challenges of DL in oncology. Additionally, this paper explores emerging solutions, including federated learning, explainable artificial intelligence, and synthetic data generation, to address these barriers. The review also emphasizes the importance of interdisciplinary collaboration, the integration of next-generation artificial intelligence techniques, and the adoption of multimodal data approaches to improve diagnostic precision and support personalized cancer treatment. By systematically analyzing key developments and challenges, this review aims to guide future research and DL technologies in oncology, promoting equitable and impactful advancements in cancer care.
深度学习(DL)彻底改变了癌症检测的准确性、速度和可及性。借助复杂的算法,DL已在包括基于成像的诊断和基因组分析在内的各种应用中展现出变革潜力,最终实现更好的检测效果、改善患者治疗结果并降低总体死亡率。尽管前景广阔,但将DL整合到临床实践中面临诸多重大挑战,包括数据质量和标准化方面的限制,以及伦理和监管问题,还有对模型可解释性和透明度的需求。本综述对从PubMed和IEEE Xplore数据库检索到的近期研究(2018 - 2024年)进行了全面分析,涵盖来自PubMed的1304项研究和来自IEEE的115项研究,以突出DL在肿瘤学中的当前应用、机遇和挑战。此外,本文探讨了新兴解决方案,包括联邦学习、可解释人工智能和合成数据生成,以应对这些障碍。该综述还强调了跨学科合作、整合下一代人工智能技术以及采用多模态数据方法以提高诊断精度和支持个性化癌症治疗的重要性。通过系统分析关键进展和挑战,本综述旨在指导肿瘤学领域未来的研究和DL技术,推动癌症护理领域实现公平且有影响力的进步。
Mayo Clin Proc Digit Health. 2025-7-18
J Med Internet Res. 2025-6-23
J Med Internet Res. 2025-4-4
Semin Hematol. 2025-6-16
Methods Mol Biol. 2025
JAMA Health Forum. 2025-3-7
Breast Cancer Res. 2024-9-20
Front Artif Intell. 2024-7-25