University of Castilla-La Mancha, Ciudad Real, Spain.
Sanchinarro University Hospital, HM Hospitales, Madrid, Spain.
NPJ Syst Biol Appl. 2023 Jul 21;9(1):35. doi: 10.1038/s41540-023-00298-1.
Tumor growth is the result of the interplay of complex biological processes in huge numbers of individual cells living in changing environments. Effective simple mathematical laws have been shown to describe tumor growth in vitro, or simple animal models with bounded-growth dynamics accurately. However, results for the growth of human cancers in patients are scarce. Our study mined a large dataset of 1133 brain metastases (BMs) with longitudinal imaging follow-up to find growth laws for untreated BMs and recurrent treated BMs. Untreated BMs showed high growth exponents, most likely related to the underlying evolutionary dynamics, with experimental tumors in mice resembling accurately the disease. Recurrent BMs growth exponents were smaller, most probably due to a reduction in tumor heterogeneity after treatment, which may limit the tumor evolutionary capabilities. In silico simulations using a stochastic discrete mesoscopic model with basic evolutionary dynamics led to results in line with the observed data.
肿瘤生长是大量生活在不断变化环境中的个体细胞中复杂生物过程相互作用的结果。已经证明有效的简单数学定律可以准确描述体外肿瘤生长或具有有限生长动态的简单动物模型。然而,关于患者体内人类癌症生长的结果却很少。我们的研究挖掘了一个包含 1133 个脑转移瘤(BMs)的大型数据集,这些肿瘤有纵向成像随访,以找到未治疗的 BMs 和复发性治疗的 BMs 的生长规律。未经治疗的 BMs 显示出高的生长指数,这很可能与潜在的进化动态有关,小鼠中的实验肿瘤准确地模拟了疾病。复发性 BMs 的生长指数较小,很可能是由于治疗后肿瘤异质性的减少,这可能限制了肿瘤的进化能力。使用具有基本进化动态的随机离散介观模型进行的计算机模拟得出的结果与观察到的数据一致。