Suppr超能文献

利用语音生物标志物进行虚弱分类。

Using voice biomarkers for frailty classification.

机构信息

Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel.

Geriatric Division, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.

出版信息

Geroscience. 2024 Feb;46(1):1175-1179. doi: 10.1007/s11357-023-00872-9. Epub 2023 Jul 22.

Abstract

Clinicians use the patient's voice intuitively to evaluate general health and frailty. Voice is an emerging health indicator but has been scarcely studied in the context of frailty. This study explored voice parameters as possible predictors of frailty in older adults. Fifty-three participants over 70 years old were recruited from rehabilitation wards at a tertiary medical center. Participants' frailty was assessed using Rockwood frailty index and they were classified as most-frail (n = 33, 68%) or less-frail (n = 20, 32%). Participants were recorded counting from 1 to 10 and backwards using a smartphone recording application. The following voice biomarkers were derived: peak and average volume, peak/average volume ratio, pauses' total length, and pause length standard deviation. The most-frail group had a higher peak volume/average volume ratio (p = 0.03) and greater variance in lengths of pauses between speech segments (p = 0.002). These parameters indicate greater speech irregularity in the most-frail, compared to the less-frail. The most-frail group also had a longer total duration of pauses (p = 0.02). No statistically significant difference was found in peak and average volume (p = 0.75 and 0.39). Most-frail participants' speech had different characteristics, compared to participants in the less-frail group. This is a first step to developing an AI-based frailty assessment tool that can assist in identifying our most vulnerable patients.

摘要

临床医生凭直觉使用患者的声音来评估整体健康和虚弱程度。声音是一种新兴的健康指标,但在虚弱方面的研究甚少。本研究探讨了声音参数作为预测老年人虚弱的可能指标。从一家三级医疗中心的康复病房招募了 53 名 70 岁以上的参与者。使用 Rockwood 虚弱指数评估参与者的虚弱程度,他们分为最虚弱(n = 33,68%)和非最虚弱(n = 20,32%)。参与者使用智能手机录音应用程序从 1 数到 10 并倒着数。得出以下声音生物标志物:峰值和平均音量、峰值/平均音量比、停顿总长度和停顿长度标准差。最虚弱组的峰值音量/平均音量比更高(p = 0.03),言语片段之间停顿长度的方差更大(p = 0.002)。与非最虚弱组相比,这些参数表明最虚弱组的言语更不规则。最虚弱组的停顿总时长也更长(p = 0.02)。峰值和平均音量无统计学差异(p = 0.75 和 0.39)。与非最虚弱组相比,最虚弱组参与者的言语具有不同的特征。这是开发基于人工智能的虚弱评估工具以帮助识别我们最脆弱的患者的第一步。

相似文献

1
Using voice biomarkers for frailty classification.
Geroscience. 2024 Feb;46(1):1175-1179. doi: 10.1007/s11357-023-00872-9. Epub 2023 Jul 22.
2
Predicting frailty in older adults using vocal biomarkers: a cross-sectional study.
BMC Geriatr. 2022 Jul 1;22(1):549. doi: 10.1186/s12877-022-03237-7.
3
Sensor-based characterization of daily walking: a new paradigm in pre-frailty/frailty assessment.
BMC Geriatr. 2020 May 6;20(1):164. doi: 10.1186/s12877-020-01572-1.
4
Frailty Syndrome, Cognition, and Dysphonia in the Elderly.
J Voice. 2020 Jan;34(1):160.e15-160.e23. doi: 10.1016/j.jvoice.2018.06.001. Epub 2018 Jul 25.
9
Older adults' perceptions and informational needs regarding frailty.
BMC Geriatr. 2018 Feb 13;18(1):46. doi: 10.1186/s12877-018-0741-3.
10
A potential urinary biomarker to determine frailty status among older adults.
Arch Gerontol Geriatr. 2020 May-Jun;88:104038. doi: 10.1016/j.archger.2020.104038. Epub 2020 Feb 25.

本文引用的文献

1
Voice biomarkers as indicators of cognitive changes in middle and later adulthood.
Neurobiol Aging. 2022 Nov;119:22-35. doi: 10.1016/j.neurobiolaging.2022.06.010. Epub 2022 Jul 1.
2
Predicting frailty in older adults using vocal biomarkers: a cross-sectional study.
BMC Geriatr. 2022 Jul 1;22(1):549. doi: 10.1186/s12877-022-03237-7.
4
Ability of 3 Frailty Measures to Predict Short-Term Outcomes in Older Patients Admitted for Post-Acute Inpatient Rehabilitation.
J Am Med Dir Assoc. 2022 May;23(5):880-884. doi: 10.1016/j.jamda.2021.09.029. Epub 2021 Oct 20.
5
Identification of digital voice biomarkers for cognitive health.
Explor Med. 2020;1:406-417. doi: 10.37349/emed.2020.00028. Epub 2020 Dec 31.
6
Association Between Patient Frailty and Postoperative Mortality Across Multiple Noncardiac Surgical Specialties.
JAMA Surg. 2021 Jan 1;156(1):e205152. doi: 10.1001/jamasurg.2020.5152. Epub 2021 Jan 13.
7
Respiratory Muscle Strength Training to Improve Vocal Function in Patients with Presbyphonia.
J Voice. 2022 May;36(3):344-360. doi: 10.1016/j.jvoice.2020.06.006. Epub 2020 Jul 14.
8
Frailty and aging in cancer survivors.
Transl Res. 2020 Jul;221:65-82. doi: 10.1016/j.trsl.2020.03.013. Epub 2020 May 1.
9
Investigating voice as a biomarker: Deep phenotyping methods for early detection of Parkinson's disease.
J Biomed Inform. 2020 Apr;104:103362. doi: 10.1016/j.jbi.2019.103362. Epub 2019 Dec 19.
10
Speech Analysis by Natural Language Processing Techniques: A Possible Tool for Very Early Detection of Cognitive Decline?
Front Aging Neurosci. 2018 Nov 13;10:369. doi: 10.3389/fnagi.2018.00369. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验