Suppr超能文献

美国国立卫生研究院心肺成像人工智能研讨会记录:转化为患者护理

Proceedings of the NHLBI Workshop on Artificial Intelligence in Cardiovascular Imaging: Translation to Patient Care.

机构信息

Cedars-Sinai Medical Center, Los Angeles, California, USA.

Department of Medicine, University of California-San Francisco, San Francisco, California, USA.

出版信息

JACC Cardiovasc Imaging. 2023 Sep;16(9):1209-1223. doi: 10.1016/j.jcmg.2023.05.012. Epub 2023 Jul 19.

Abstract

Artificial intelligence (AI) promises to revolutionize many fields, but its clinical implementation in cardiovascular imaging is still rare despite increasing research. We sought to facilitate discussion across several fields and across the lifecycle of research, development, validation, and implementation to identify challenges and opportunities to further translation of AI in cardiovascular imaging. Furthermore, it seemed apparent that a multidisciplinary effort across institutions would be essential to overcome these challenges. This paper summarizes the proceedings of the National Heart, Lung, and Blood Institute-led workshop, creating consensus around needs and opportunities for institutions at several levels to support and advance research in this field and support future translation.

摘要

人工智能(AI)有望彻底改变许多领域,但尽管研究不断增加,其在心血管成像中的临床应用仍较为少见。我们试图促进多个领域之间的讨论,并涵盖研究、开发、验证和实施的整个生命周期,以确定进一步将人工智能转化为心血管成像的挑战和机遇。此外,显然需要跨机构的多学科努力来克服这些挑战。本文总结了美国国立心肺血液研究所(National Heart, Lung, and Blood Institute)主导的研讨会的会议记录,就各级机构在支持和推进该领域研究以及支持未来转化方面的需求和机会达成了共识。

相似文献

1
Proceedings of the NHLBI Workshop on Artificial Intelligence in Cardiovascular Imaging: Translation to Patient Care.
JACC Cardiovasc Imaging. 2023 Sep;16(9):1209-1223. doi: 10.1016/j.jcmg.2023.05.012. Epub 2023 Jul 19.
4
Proceedings from the First Global Artificial Intelligence in Gastroenterology and Endoscopy Summit.
Gastrointest Endosc. 2020 Oct;92(4):938-945.e1. doi: 10.1016/j.gie.2020.04.044. Epub 2020 Apr 25.
5
Feasibility of artificial intelligence its current status, clinical applications, and future direction in cardiovascular disease.
Curr Probl Cardiol. 2024 Feb;49(2):102349. doi: 10.1016/j.cpcardiol.2023.102349. Epub 2023 Dec 14.
6
Progress and Research Priorities in Imaging Genomics for Heart and Lung Disease: Summary of an NHLBI Workshop.
Circ Cardiovasc Imaging. 2021 Aug;14(8):e012943. doi: 10.1161/CIRCIMAGING.121.012943. Epub 2021 Aug 13.
7
AI in medical imaging grand challenges: translation from competition to research benefit and patient care.
Br J Radiol. 2023 Oct;96(1150):20221152. doi: 10.1259/bjr.20221152. Epub 2023 Sep 12.
8
National Cancer Institute Workshop on Artificial Intelligence in Radiation Oncology: Training the Next Generation.
Pract Radiat Oncol. 2021 Jan-Feb;11(1):74-83. doi: 10.1016/j.prro.2020.06.001. Epub 2020 Jun 13.
9
Artificial Intelligence in Cardiovascular Care-Part 2: Applications: JACC Review Topic of the Week.
J Am Coll Cardiol. 2024 Jun 18;83(24):2487-2496. doi: 10.1016/j.jacc.2024.03.401. Epub 2024 Apr 7.
10
Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice.
Transl Vis Sci Technol. 2020 Oct 15;9(2):55. doi: 10.1167/tvst.9.2.55. eCollection 2020 Oct.

引用本文的文献

1
A deep learning algorithm for automated adrenal gland segmentation on non-contrast CT images.
BMC Med Imaging. 2025 May 1;25(1):142. doi: 10.1186/s12880-025-01682-5.
3
Artificial Intelligence to Enhance Precision Medicine in Cardio-Oncology: A Scientific Statement From the American Heart Association.
Circ Genom Precis Med. 2025 Apr;18(2):e000097. doi: 10.1161/HCG.0000000000000097. Epub 2025 Feb 24.
8
Grade Inflation in Generative Models.
ArXiv. 2025 Jan 22:arXiv:2501.00664v3.
9
: An Improved Python Package for Loading Datasets from the UCI Machine Learning Repository.
bioRxiv. 2024 Oct 21:2024.10.18.618994. doi: 10.1101/2024.10.18.618994.
10
Knowledge, Attitude and Practice of Radiologists Regarding Artificial Intelligence in Medical Imaging.
J Multidiscip Healthc. 2024 Jul 4;17:3109-3119. doi: 10.2147/JMDH.S451301. eCollection 2024.

本文引用的文献

1
Deep Learning of Coronary Calcium Scores From PET/CT Attenuation Maps Accurately Predicts Adverse Cardiovascular Events.
JACC Cardiovasc Imaging. 2023 May;16(5):675-687. doi: 10.1016/j.jcmg.2022.06.006. Epub 2022 Sep 14.
2
Deep Learning-Based Attenuation Correction Improves Diagnostic Accuracy of Cardiac SPECT.
J Nucl Med. 2023 Mar;64(3):472-478. doi: 10.2967/jnumed.122.264429. Epub 2022 Sep 22.
3
Deep Learning for Explainable Estimation of Mortality Risk From Myocardial Positron Emission Tomography Images.
Circ Cardiovasc Imaging. 2022 Sep;15(9):e014526. doi: 10.1161/CIRCIMAGING.122.014526. Epub 2022 Sep 20.
4
Transparency of AI in Healthcare as a Multilayered System of Accountabilities: Between Legal Requirements and Technical Limitations.
Front Artif Intell. 2022 May 30;5:879603. doi: 10.3389/frai.2022.879603. eCollection 2022.
6
Explainable Deep Learning Improves Physician Interpretation of Myocardial Perfusion Imaging.
J Nucl Med. 2022 Nov;63(11):1768-1774. doi: 10.2967/jnumed.121.263686. Epub 2022 May 5.
8
Epicardial and pericardial fat analysis on CT images and artificial intelligence: a literature review.
Quant Imaging Med Surg. 2022 Mar;12(3):2075-2089. doi: 10.21037/qims-21-945.
9
Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations.
Nat Med. 2021 Dec;27(12):2176-2182. doi: 10.1038/s41591-021-01595-0. Epub 2021 Dec 10.
10
Spending on Cardiovascular Disease and Cardiovascular Risk Factors in the United States: 1996 to 2016.
Circulation. 2021 Jul 27;144(4):271-282. doi: 10.1161/CIRCULATIONAHA.120.053216. Epub 2021 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验