Suppr超能文献

一种用于在非增强CT图像上自动分割肾上腺的深度学习算法。

A deep learning algorithm for automated adrenal gland segmentation on non-contrast CT images.

作者信息

Meng Fanxing, Zhang Tuo, Pan Yukun, Kan Xiaojing, Xia Yuwei, Xu Mengyuan, Cai Jin, Liu Fangbin, Ge Yinghui

机构信息

Department of Radiology, Central China Subcenter of National Center for Cardiovascular Diseases, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China.

Shanghai United Imaging Intelligence Co. Ltd, 701 Yunjin Road, Xuhui District, Shanghai, 200030, China.

出版信息

BMC Med Imaging. 2025 May 1;25(1):142. doi: 10.1186/s12880-025-01682-5.

Abstract

BACKGROUND

The adrenal glands are small retroperitoneal organs, few reference standards exist for adrenal CT measurements in clinical practice. This study aims to develop a deep learning (DL) model for automated adrenal gland segmentation on non-contrast CT images, and to conduct a preliminary large-scale study on age-related volume changes in normal adrenal glands using the model output values.

METHODS

The model was trained and evaluated on a development dataset of annotated non-contrast CT scans of bilateral adrenal glands, utilizing nnU-Net for segmentation task. The ground truth was manually established by two experienced radiologists, and the model performance was assessed using the Dice similarity coefficient (DSC). Additionally, five radiologists provided annotations on a subset of 20 randomly selected cases to measure inter-observer variability. Following validation, the model was applied to a large-scale normal adrenal glands dataset to segment adrenal glands.

RESULTS

The DL model development dataset contained 1301 CT examinations. In the test set, the median DSC scores for the segmentation model of left and right adrenal glands were 0.899 and 0.904 respectively, and in the independent test set were 0.900 and 0.896. Inter-observer DSC for radiologist manual segmentation did not differ from automated machine segmentation (P = 0.541). The large-scale normal adrenal glands dataset contained 2000 CT examinations, the graph shows that adrenal gland volume increases first and then decreases with age.

CONCLUSION

The developed DL model demonstrates accurate adrenal gland segmentation, and enables a comprehensive study of age-related adrenal gland volume variations.

摘要

背景

肾上腺是腹膜后的小器官,临床实践中肾上腺CT测量的参考标准较少。本研究旨在开发一种深度学习(DL)模型,用于在非增强CT图像上自动分割肾上腺,并使用模型输出值对正常肾上腺的年龄相关体积变化进行初步大规模研究。

方法

该模型在双侧肾上腺的带注释非增强CT扫描的开发数据集上进行训练和评估,利用nnU-Net进行分割任务。由两名经验丰富的放射科医生手动确定真实情况,并使用Dice相似系数(DSC)评估模型性能。此外,五名放射科医生对20例随机选择病例的子集进行注释,以测量观察者间的变异性。验证后,将该模型应用于大规模正常肾上腺数据集以分割肾上腺。

结果

DL模型开发数据集包含1301次CT检查。在测试集中,左、右肾上腺分割模型的DSC中位数分别为0.899和0.904,在独立测试集中分别为0.900和0.896。放射科医生手动分割的观察者间DSC与自动机器分割无差异(P = 0.541)。大规模正常肾上腺数据集包含2000次CT检查,图表显示肾上腺体积随年龄先增加后减少。

结论

所开发的DL模型显示出准确的肾上腺分割,并能够对年龄相关的肾上腺体积变化进行全面研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c183/12046700/f99a2f22d2d4/12880_2025_1682_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验