文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A deep learning algorithm for automated adrenal gland segmentation on non-contrast CT images.

作者信息

Meng Fanxing, Zhang Tuo, Pan Yukun, Kan Xiaojing, Xia Yuwei, Xu Mengyuan, Cai Jin, Liu Fangbin, Ge Yinghui

机构信息

Department of Radiology, Central China Subcenter of National Center for Cardiovascular Diseases, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China.

Shanghai United Imaging Intelligence Co. Ltd, 701 Yunjin Road, Xuhui District, Shanghai, 200030, China.

出版信息

BMC Med Imaging. 2025 May 1;25(1):142. doi: 10.1186/s12880-025-01682-5.


DOI:10.1186/s12880-025-01682-5
PMID:40312690
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12046700/
Abstract

BACKGROUND: The adrenal glands are small retroperitoneal organs, few reference standards exist for adrenal CT measurements in clinical practice. This study aims to develop a deep learning (DL) model for automated adrenal gland segmentation on non-contrast CT images, and to conduct a preliminary large-scale study on age-related volume changes in normal adrenal glands using the model output values. METHODS: The model was trained and evaluated on a development dataset of annotated non-contrast CT scans of bilateral adrenal glands, utilizing nnU-Net for segmentation task. The ground truth was manually established by two experienced radiologists, and the model performance was assessed using the Dice similarity coefficient (DSC). Additionally, five radiologists provided annotations on a subset of 20 randomly selected cases to measure inter-observer variability. Following validation, the model was applied to a large-scale normal adrenal glands dataset to segment adrenal glands. RESULTS: The DL model development dataset contained 1301 CT examinations. In the test set, the median DSC scores for the segmentation model of left and right adrenal glands were 0.899 and 0.904 respectively, and in the independent test set were 0.900 and 0.896. Inter-observer DSC for radiologist manual segmentation did not differ from automated machine segmentation (P = 0.541). The large-scale normal adrenal glands dataset contained 2000 CT examinations, the graph shows that adrenal gland volume increases first and then decreases with age. CONCLUSION: The developed DL model demonstrates accurate adrenal gland segmentation, and enables a comprehensive study of age-related adrenal gland volume variations.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c183/12046700/45ed42ea73cf/12880_2025_1682_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c183/12046700/f99a2f22d2d4/12880_2025_1682_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c183/12046700/29f56826961f/12880_2025_1682_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c183/12046700/557c1437de67/12880_2025_1682_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c183/12046700/45ed42ea73cf/12880_2025_1682_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c183/12046700/f99a2f22d2d4/12880_2025_1682_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c183/12046700/29f56826961f/12880_2025_1682_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c183/12046700/557c1437de67/12880_2025_1682_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c183/12046700/45ed42ea73cf/12880_2025_1682_Fig4_HTML.jpg

相似文献

[1]
A deep learning algorithm for automated adrenal gland segmentation on non-contrast CT images.

BMC Med Imaging. 2025-5-1

[2]
Machine Learning for Adrenal Gland Segmentation and Classification of Normal and Adrenal Masses at CT.

Radiology. 2023-2

[3]
Fully automatic volume measurement of the adrenal gland on CT using deep learning to classify adrenal hyperplasia.

Eur Radiol. 2023-6

[4]
nnU-Net-Based Pancreas Segmentation and Volume Measurement on CT Imaging in Patients with Pancreatic Cancer.

Acad Radiol. 2024-7

[5]
Adrenal Volume Quantitative Visualization Tool by Multiple Parameters and an nnU-Net Deep Learning Automatic Segmentation Model.

J Imaging Inform Med. 2025-2

[6]
Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.

Med Phys. 2021-5

[7]
Automated segmentation of liver and hepatic vessels on portal venous phase computed tomography images using a deep learning algorithm.

J Appl Clin Med Phys. 2024-8

[8]
Development and validation of fully automated robust deep learning models for multi-organ segmentation from whole-body CT images.

Phys Med. 2025-2

[9]
Tumor conspicuity enhancement-based segmentation model for liver tumor segmentation and RECIST diameter measurement in non-contrast CT images.

Comput Biol Med. 2024-5

[10]
Abdomen CT multi-organ segmentation using token-based MLP-Mixer.

Med Phys. 2023-5

本文引用的文献

[1]
Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging.

Tomography. 2024-11-18

[2]
A Contemporary Approach to the Diagnosis and Management of Adrenal Insufficiency.

Endocrinol Metab (Seoul). 2024-2

[3]
CT radiomics to differentiate between Wilms tumor and clear cell sarcoma of the kidney in children.

BMC Med Imaging. 2024-1-5

[4]
MCNet: A multi-level context-aware network for the segmentation of adrenal gland in CT images.

Neural Netw. 2024-2

[5]
Machine learning for differentiation of lipid-poor adrenal adenoma and subclinical pheochromocytoma based on multiphase CT imaging radiomics.

BMC Med Imaging. 2023-10-16

[6]
Recent Updates on the Management of Adrenal Incidentalomas.

Endocrinol Metab (Seoul). 2023-8

[7]
uRP: An integrated research platform for one-stop analysis of medical images.

Front Radiol. 2023-4-18

[8]
AI-Guided Quantitative Plaque Staging Predicts Long-Term Cardiovascular Outcomes in Patients at Risk for Atherosclerotic CVD.

JACC Cardiovasc Imaging. 2024-3

[9]
Proceedings of the NHLBI Workshop on Artificial Intelligence in Cardiovascular Imaging: Translation to Patient Care.

JACC Cardiovasc Imaging. 2023-9

[10]
Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries.

Nat Rev Cardiol. 2024-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索