Suppr超能文献

利用机器学习优化酸化设计及有效性评估以预测酸化后的渗透率

Optimizing acidizing design and effectiveness assessment with machine learning for predicting post-acidizing permeability.

作者信息

Dargi Matin, Khamehchi Ehsan, Mahdavi Kalatehno Javad

机构信息

Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran.

出版信息

Sci Rep. 2023 Jul 22;13(1):11851. doi: 10.1038/s41598-023-39156-9.

Abstract

Formation damage poses a widespread challenge in the oil and gas industry, leading to diminished permeability, flow rates, and overall well productivity. Acidizing is a commonly employed technique aimed at mitigating damage and enhancing permeability. In this study, to predict the permeability after acidizing in oil and gas reservoirs, three machine learning models, namely artificial neural networks, random forest, and XGBoost, along with genetic programming were used to estimate permeability changes after acidizing. These models are utilized to estimate permeability changes following acidizing operations. Training of the models involved a dataset comprising 218 acidizing operations conducted in diverse reservoirs across Iran. The input parameters, namely permeability, porosity, skin factor, calcite mineral fraction, acid injection rate, and injected acid volume, were optimized through the use of a genetic algorithm. Statistical and graphical analysis of the results demonstrates that genetic programming outperformed the other machine learning techniques, yielding superior performance with R square and RMSE values of 0.82 and 17.65, respectively. Nevertheless, the other models also exhibited commendable performance, surpassing an R square value of 0.73. The post-acidizing permeability data obtained from core flooding experiments conducted on carbonate and sandstone cores was utilized to validate the models. The genetic programming model demonstrates an average error of 21.1%. The evaluation of post-acidizing permeability using genetic programming, in comparison with the results obtained from the core-flood test, revealed errors of 22.95% and 32.4% for carbonate and sandstone cores, respectively. Furthermore, a comparison between the calculated post-acidizing permeability derived from the GP model and previous studies indicated errors within the range of 8.6-26.59%. The findings highlight the potential of genetic programming and machine learning algorithms in accurately predicting post-acidizing permeability, thereby aiding in acidizing design, effectiveness assessment, and ultimately enhancing oil and gas production rates.

摘要

地层损害在石油和天然气行业中是一个普遍存在的挑战,会导致渗透率、流速和整体油井产能下降。酸化是一种常用的减轻损害和提高渗透率的技术。在本研究中,为了预测油气藏酸化后的渗透率,使用了三种机器学习模型,即人工神经网络、随机森林和XGBoost,以及遗传规划来估计酸化后的渗透率变化。这些模型用于估计酸化作业后的渗透率变化。模型训练使用了一个数据集,该数据集包含在伊朗不同油藏进行的218次酸化作业。通过使用遗传算法对输入参数,即渗透率、孔隙度、表皮系数、方解石矿物分数、酸注入速率和注入酸体积进行了优化。结果的统计和图形分析表明,遗传规划的性能优于其他机器学习技术,其R平方和均方根误差(RMSE)值分别为0.82和17.65,表现出色。然而,其他模型也表现出了值得称赞的性能,R平方值超过了0.73。利用在碳酸盐岩和砂岩岩心上进行的岩心驱替实验获得的酸化后渗透率数据对模型进行了验证。遗传规划模型的平均误差为21.1%。与岩心驱替试验结果相比,使用遗传规划评估酸化后渗透率时,碳酸盐岩和砂岩岩心的误差分别为22.95%和32.4%。此外,将从遗传规划(GP)模型计算得到的酸化后渗透率与先前研究进行比较,误差在8.6 - 26.59%范围内。研究结果突出了遗传规划和机器学习算法在准确预测酸化后渗透率方面的潜力,从而有助于酸化设计、效果评估,并最终提高油气产量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42dd/10363159/bddef17661c1/41598_2023_39156_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验