Suppr超能文献

东亚人工林空间数据库。

Spatial database of planted forests in East Asia.

机构信息

Forest Advanced Computing and Artificial Intelligence (FACAI) Lab, Department of Forestry and Natural Resources, Purdue University, 715 W State St., West Lafayette, IN, 47907, USA.

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, P.R. China.

出版信息

Sci Data. 2023 Jul 22;10(1):480. doi: 10.1038/s41597-023-02383-w.

Abstract

Planted forests are critical to climate change mitigation and constitute a major supplier of timber/non-timber products and other ecosystem services. Globally, approximately 36% of planted forest area is located in East Asia. However, reliable records of the geographic distribution and tree species composition of these planted forests remain very limited. Here, based on extensive in situ and remote sensing data, as well as an ensemble modeling approach, we present the first spatial database of planted forests for East Asia, which consists of maps of the geographic distribution of planted forests and associated dominant tree genera. Of the predicted planted forest areas in East Asia (948,863 km), China contributed 87%, most of which is located in the lowland tropical/subtropical regions, and Sichuan Basin. With 95% accuracy and an F1 score of 0.77, our spatially-continuous maps of planted forests enable accurate quantification of the role of planted forests in climate change mitigation. Our findings inform effective decision-making in forest conservation, management, and global restoration projects.

摘要

人工林对减缓气候变化至关重要,是木材/非木材产品和其他生态系统服务的主要供应者。全球约有 36%的人工林面积位于东亚。然而,这些人工林的地理分布和树种组成的可靠记录仍然非常有限。在这里,我们基于广泛的实地和遥感数据以及集合建模方法,为东亚地区首次提供了人工林的空间数据库,其中包括人工林地理分布和相关主要树种的地图。在预测的东亚人工林面积(948863 平方公里)中,中国贡献了 87%,其中大部分位于低地热带/亚热带地区和四川盆地。我们的人工林空间连续地图的准确率为 95%,F1 得分为 0.77,可准确量化人工林在减缓气候变化方面的作用。我们的研究结果为森林保护、管理和全球恢复项目中的有效决策提供了信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59f6/10363164/4dcab0a75a76/41597_2023_2383_Fig1_HTML.jpg

相似文献

1
Spatial database of planted forests in East Asia.
Sci Data. 2023 Jul 22;10(1):480. doi: 10.1038/s41597-023-02383-w.
2
Tropical and subtropical Asia's valued tree species under threat.
Conserv Biol. 2022 Jun;36(3):e13873. doi: 10.1111/cobi.13873. Epub 2022 Feb 14.
3
Projecting global planted forest area developments and the associated impacts on global forest product markets.
J Environ Manage. 2019 Jun 15;240:421-430. doi: 10.1016/j.jenvman.2019.03.126. Epub 2019 Apr 5.
4
New forest biomass carbon stock estimates in Northeast Asia based on multisource data.
Glob Chang Biol. 2020 Dec;26(12):7045-7066. doi: 10.1111/gcb.15376. Epub 2020 Oct 23.
7
Air pollution monitoring and tree and forest decline in East Asia: A review.
Sci Total Environ. 2020 Nov 10;742:140288. doi: 10.1016/j.scitotenv.2020.140288. Epub 2020 Jun 18.
8
Trade-offs between carbon stocks and timber recovery in tropical forests are mediated by logging intensity.
Glob Chang Biol. 2018 Jul;24(7):2862-2874. doi: 10.1111/gcb.14155. Epub 2018 May 22.
9
Mapping tree species vulnerability to multiple threats as a guide to restoration and conservation of tropical dry forests.
Glob Chang Biol. 2020 Jun;26(6):3552-3568. doi: 10.1111/gcb.15028. Epub 2020 Mar 26.

引用本文的文献

1
Global planted forest data for timber species.
Sci Data. 2024 Nov 22;11(1):1269. doi: 10.1038/s41597-024-04125-y.
2
Carbon sequestration potential of tree planting in China.
Nat Commun. 2024 Sep 27;15(1):8398. doi: 10.1038/s41467-024-52785-6.
3
Leaf nutrient traits of planted forests demonstrate a heightened sensitivity to environmental changes compared to natural forests.
Front Plant Sci. 2024 Mar 18;15:1372530. doi: 10.3389/fpls.2024.1372530. eCollection 2024.
4
Mapping of secondary forest age in China using stacked generalization and Landsat time series.
Sci Data. 2024 Mar 16;11(1):302. doi: 10.1038/s41597-024-03133-2.

本文引用的文献

1
Co-limitation towards lower latitudes shapes global forest diversity gradients.
Nat Ecol Evol. 2022 Oct;6(10):1423-1437. doi: 10.1038/s41559-022-01831-x. Epub 2022 Aug 8.
2
Version 3 of the Global Aridity Index and Potential Evapotranspiration Database.
Sci Data. 2022 Jul 15;9(1):409. doi: 10.1038/s41597-022-01493-1.
3
Global forest management data for 2015 at a 100 m resolution.
Sci Data. 2022 May 10;9(1):199. doi: 10.1038/s41597-022-01332-3.
4
A global map of planting years of plantations.
Sci Data. 2022 Apr 1;9(1):141. doi: 10.1038/s41597-022-01260-2.
6
The importance of sharing global forest data in a world of crises.
Sci Data. 2020 Dec 1;7(1):424. doi: 10.1038/s41597-020-00766-x.
7
Mapping forest type and age in China's plantations.
Sci Total Environ. 2020 Nov 20;744:140790. doi: 10.1016/j.scitotenv.2020.140790. Epub 2020 Jul 7.
8
Why Cohen's Kappa should be avoided as performance measure in classification.
PLoS One. 2019 Sep 26;14(9):e0222916. doi: 10.1371/journal.pone.0222916. eCollection 2019.
9
China and India lead in greening of the world through land-use management.
Nat Sustain. 2019;2:122-129. doi: 10.1038/s41893-019-0220-7. Epub 2019 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验